
Functional brain connectivity evaluated by an effective and

more sufficient estimator based on extreme events

Djalel-Eddine Meskaldji1,2, Stephan Morgenthaler3, Dimitri Van De Ville1,2

1Medical Image Processing Lab (MIPLAB)
Institute of Bioengineering, EPFL, CH-1015 Lausanne, Switzerland

2Department of Radiology and Medical Informatics
University of Geneva, CH-1211 Geneva, Switzerland

3Applied statistics, Institute of mathematics
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

djalel.meskaldji@epfl.ch, stephan.morgenthaler@epfl.ch

dimitri.vandeville@epfl.ch

Résumé – Une méthodologie commune pour mesurer la connectivité fonctionnelle du cerveau (CF) est d’estimer la corrélation
entre les paires des signaux IRMf. Cet estimateur de la CF ne reflète pas toutes les l’informations que nous voulons extraire
concernant l’activité spontanée des différentes régions du cerveau, dont on sait qu’elle est non-stationnaire. Nous proposons
d’estimer la CF, de manière robuste, en modélisant les activations et désactivations des signaux IRMf comme des événements
extrêmes et en mesurant les co-activations entre ces événements à l’aide d’estimateurs non-paramétriques. Le nouvel estimateur
de la CF fait la distinction entre conformité et discordance d’activations pour chaque paire de regions, ce qui en fait un bon
candidat pour représenter la non-stationnarité de la CF car il contient des informations clés supplémentaires qui reflètent de
manière concise les caractéristiques dynamiques des fluctuations spontanées de l’activité cérébrale. La méthode proposée est
prometteuse car elle augmente la sensibilité de détecter des effets entre différents groupes.

Abstract – A common methodology to measure brain functional connectivity (FC) is to estimate pairwise correlations between
fMRI time courses. Such FC estimator does not fully reflect the information we want to extract about the spontaneous activity
in the different regions of the brain, because activity has been proved non-stationary. Furthermore, the estimated FC could
be highly influenced by the co-deactivation parts of the fMRI signals, which might induce connectivity misspecification and
misleading interpretations. We propose to estimate FC, in a robust way, by modeling activation and deactivation parts of fMRI
time courses as extreme events and by measuring the co-activations between these events using non-parametric estimators. The
new FC estimator distinguishes between accordance and discordance of pairwise activations and deactivations, which makes the
new estimator a good candidate to represent non-stationarity as it contains additional key information that concisely reflects
dynamical features of spontaneous fluctuations of the brain activity. The proposed method is promising because it brings more
sensitivity to detect group effects.

1 Introduction

Functional connectivity (FC) is aimed to describe spon-
taneous fluctuations of brain activity. FC between a pair
of regions is defined as the statistical dependence between
their time courses. One important modality of FC is func-
tional MRI, which is based on the Bold signal. Before mea-
suring FC, fMRI signals are pre-processed to remove data
acquisition artifacts and other non-desirable confounds.
Then, given an anatomical segmentation of the brain cor-
tex, voxel-wise signals are averaged across each region to
end up with a single time course per region of interest
(ROI). Conventionally, FC is estimated by Pearson cor-
relations between pairs of fMRI time courses of all brain

regions [1, 2]. Spearman correlation is a non paramet-
ric alternative estimator of FC, which can lead to differ-
ent values compared to Pearson correlation. Whole brain
connectivity is represented by the so-called FC matrix,
also referred to as the functional connectome. The matrix
that we obtain is usually full and the functional connec-
tome represents a complete graph.

Some important questions arise in this context. Which
measure of FC is better in describing spontaneous activity
and dynamics? Do the correlation, the covariance or even
the partial correlation/covariance reflect well the spon-
taneous fluctuations or co-activations of brain regions?
Whether we normalize fMRI signals or not to keep sig-



Fig. 1: Illustration of the different cases in the construc-
tion of the new FC estimator.

nal amplitude information? We are not going to address
all these questions in this paper. However, we try to im-
prove one of the aspects.
The main purpose of FC estimation is to detect activation
in brain ROIs and, second, to measure how much pairs of
ROIs are activated at the same time in resting state or
during a task. Some recent studies tried to cope with the
first problem by modeling the fMRI signals as a point pro-
cess by considering its extreme values [3]. In this paper,
we also consider extreme values of the signals and we pro-
pose to estimate FC by measuring how much two regions
are co-activated (de-activated) and how much they are
not. For each pair of regions, we measure two values: (1)
the accordance, which measures the co-activation (and the
co-deactivation) of a pair of time courses, and (2) the dis-
cordance, a measure of activation-deactivation of a pair of
time courses. We obtain a bi-variate estimator of FC that
is robust, well defined and that better reflects features of
non-stationarity of spontaneous fluctuations of the brain
activity. We show how the new estimator is different from
the correlation based estimators in terms of sensitivity of
detecting global and local differences between groups.

2 Methods

2.1 FC estimation

Let Y = y1,y2, ...,yT be a multivariate stochastic process
that represents the fMRI signals, with y = y(1), . . . , y(N) ∈
RN , observed in time points indexed by T = {1, . . . , T},
where N is the number of ROIs and T is the total ac-
quisition time. According to our conceptualization of FC,
a good estimator has to consistently estimate the statis-
tical dependence and should reflect dynamics and non-

Fig. 2: An example of an estimated FC matrix. The up-
per triangular part represents the values of accordance,
while the lower triangular part represents the values of
discordance. The diagonal contains the proportion of ac-
tivation of each ROI.

stationarity features of FC. Then a good estimator, has
to be robust, consistent and exhaustive. For the robust-
ness, we propose to threshold the fMRI signals to keep
only significant activations and deactivations of the fMRI
signals. Concretely, we consider only extreme events of
the observed time courses, assuming that these extreme
events represent significant activations or deactivations of
the corresponding brain regions. Practically, after nor-
malizing each time course by subtracting the mean and
dividing by the standard deviation of the time course, the
normalized time courses x(i), i = 1, . . . , N, are compared
to a positive and a negative threshold based on a prede-
fined quantile q. More specifically, for each time course
x(i), we identify the sub-intervals corresponding to ex-

treme events by T+
i = {t ∈ {1, . . . , T} : x

(i)
t > Φ−1(q)}

and T−i = {t ∈ {1, . . . , T} : x
(i)
t < Φ−1(1 − q)}, for posi-

tive and negative extreme events, respectively, where Φ is
the CDF of the Gaussian distribution. Doing so, we aim
to eliminate spurious fluctuations of fMRI time courses,
which are considered as noisy observations of brain activ-
ity.
Now we turn to statistical estimation of FC time courses.
Our estimator should be exhaustive (sufficient), that is, it
contains all information we want to extract from our sig-
nals to represent FC. It is important when studying FC
between two brain regions to know how much each region
is activated during the time course and how much these
two regions are activated or deactivated at the same time,
and how much they are in a opposite situation.
We set for each vector x, the thresholded vector xu such



that xut = 0 if xt < u and xut = 1 otherwise. Similarly, xl

derived from the vector x as xlt = 0 if xt > l and xlt = −1
otherwise. In the following algorithm we use this notation
< x,y > for the inner product of x and y.
The ratio of the union of the significant positive extreme

Input The normalized observed multivariate process

XT = x1,x2, ...,xN, where xi = x
(i)
1 , . . . , x

(i)
T ∈ RT

and t = 1, . . . , T.
A quantile threshold q.
Output An estimation of FC.
for i ∈ {1, ..., N} do

Define u = Φ−1(q) and l = Φ−1(−q).
πi = (xu

i ∗ xu
i)/(x

u
i ∗ xu

i + xl
i ∗ xl

i).
end
for i ∈ {1, ..., N − 1} do

for j ∈ {(i+ 1), ..., N} do
Ei,j =√

(xu
i ∗ xu

i) + (xl
i ∗ xl

i)
√

(xu
j ∗ xu

j) + (xl
j ∗ xl

j)
ai,j = (xu

i ∗ xu
j + xl

i ∗ xl
j)/Ei,j

di,j = (xu
i ∗ xl

j + xl
i ∗ xu

j)/Ei,j

end

end
Algorithm 1: Estimation of the proposed FC measures.

sub-intervals over the whole significant time interval length
measures the proportion of significant activation of the
corresponding brain region πi. If the FC is represented by
N×N matrix, this value is stored in the diagonal element
i in the estimated FC matrix (see Figure 2). Then, for
each pair of time courses, xi and xj , we determine the size
of the union of co-activation and co-deactivation interval
times and we normalize by the size of the union of signifi-
cant activation and deactivation interval times of the two
time courses. The obtained value indicates the accordance
of co-activation and co-deactivation of the corresponding
pair of brain regions, and is stored in the upper-triangular
part of the FC matrix. Similarly, we obtain the measure of
discordance between two time courses by considering the
size of positive-negative and negative-positive extreme in-
terval times, also normalized by the size of the union of
activation and deactivation interval times of the two time
courses. This measure is stored in the lower-triangular
part of the FC matrix. The FC estimator is summarized
in Algorithm 1. Figure 1 illustrates some of the concepts
introduced in this section.
We can easily show that 0 ≤ πi ≤ 1, 0 ≤ ai,j ≤ 1,
−1 ≤ di,j ≤ 0 and −1 ≤ ai,j + di,j ≤ 1, for all i and
j.
We can also prove that for a given time course x, the fol-
lowing holds: a(x,x) = 1, a(x,−x) = 0 and d(x,x) =
0, d(x,−x) = −1.

2.2 Statistical comparaisons

The new FC estimator could be used in different brain
connectivity applications. Here we present a group study
and we compare the sensitivity of our estimator against
Pearson correlation estimator. The study consists in com-
paring brain FC between 13 healthy controls (HC) and
15 patients with multiple sclerosis (MS) [4]. We con-
sider two levels of comparison: the local level and the
global level [5]. Local comparison gives more refined re-
sults, but suffers from lack of power because of multiplic-
ity correction. We study local differences by considering
each single connection between a pair of ROIs. In the
Pearson FC case, the local connectivity measure is the

Pearson correlation, that is, ρ
(k)
i,j for a given subject k

and for each pair of ROIs i and j. We also used dif-
ferent local measures derived from our new FC estima-
tor. For each subject k, we consider these two local mea-

sures: (1) the accordance a
(k)
i,j (2) the bivariate measure

(a
(k)
i,j , d

(k)
i,j )T . As a global measure, we take the empirical

mean of FC. For the Pearson correlation case, the mean is

C̄(k) = 2/(N(N − 1))
∑

i∈{1,...,N−1}
∑

j∈{i,...,N} ρ
(k)
i,j . For

the proposed FC estimator, the summary statistic is either
a bivariate corresponding to the empirical mean of accor-
dance ā(k) and the empirical mean of discordance d̄(k), or
a trivariate measure by adding the empirical mean of sig-

nificant activation time π̄
(k)
i .

In all univariate cases, we used the Student t-test to de-
rive significance p-values. While in the multivariate cases,
we used the t2 Hotelling test statistic [6]. Finally, in the
local level, p-values are corrected for multiplicity using ei-
ther the Bonferroni procedure which controls the family
wise error rate (FWER), or the Benjamini and Hochberg
procedure to control the false discovery rate (FDR) [7].

3 Results and discussion

Tab. 1: Number of significantly different connections (af-
ter Bonferroni or FDR correction) when using (ai,j ; di,j)

T

as local connectivity measure. We also report the mini-
mum (non-corrected) p-value. Different quantile thresh-
olds are used. P-values are Bonferroni or FDR corrected.

Threshold 0.75 0.80 0.9 0.95
Bonferroni 2 2 0 0

FDR 22 6 0 0
min p-value 3 · 10−7 3 · 10−6 2 · 10−3 4 · 10−3

Using Pearson correlation as a measure of local con-
nectivity ends up with no significant results after both
Bonferroni and FDR correction. The minimum p-value
in this case is 2.83 · 10−5. The situation is the same



Tab. 2: Number of significantly different connections (af-
ter Bonferroni or FDR correction) when using the accor-
dance ai,j as local connectivity measure. We also report
the minimum (non-corrected) p-value. Different quantile
thresholds are used.

Threshold 0.75 0.80 0.9 0.95
Bonferroni 1 2 0 0

FDR 48 34 0 0
min p-value 3 · 10−7 3 · 10−7 1 · 10−4 2 · 10−4

Tab. 3: P-values of global comparison using different sum-
mary statistics with different quantile threshold values.

Threshold 0.75 0.8 0.9 0.95
T̄+ 0.02 0.0059 0.0032 0.055
ā 0.0015 0.0025 0.047 0.44
d̄ 0.077 0.011 0.0084 0.0088
ā/d̄ 0.001 0.0058 0.041 0.048

(ā; d̄)T 0.0070 0.02 0.017 0.0025
(ā; d̄, π̄)T 0.0074 0.00052 0.0012 0.0032

when using either the accordance ai,j or the bi-variate
measure (ai,j ; di,j)

T , with quantile threshold q = 0.9 or
0.95. However, when the quantile threshold is 0.75 or
0.80, sensitivity increases, especially when using only the
accordance as a local measure (Table 1 and Table 2). At
the global level, the comparison sensitivity is also influ-
enced by the quantile threshold q. The most significant
p-values correspond to quantile threshold q = 0.75 or 0.80.
The bi-variate and the tri-variate summary statistics lead
to high significance (Table 3) compared to the global cor-
relation mean that gives a significance p-value of 0.0143.
Small values of the quantile threshold give less sparse FC.
Even with the smallest possible value, which is 0.5, the
new measure still have a sensitivity advantage. Note that
in this case, that is q = 0.5, if we sum the accordance
value with the discordance value, we end up with a FC
estimation that is close to the one obtained with Pearson
correlation.
These results show that the new FC estimator is more sen-
sitive than common FC estimators. This sensitivity is in-
creased because the new estimator contains extra relevant
information about FC that is lost with common estima-
tors such as Pearson correlation or Spearman correaltion.
Thus, the multivariate property together with the robust-
ness of the new estimator might be the key ingredients
that bring more statistical power to detect group differ-
ences. Then, we can say that it is more suitable in brain
connectivity studies.

4 Conclusion

We proposed a new measure of FC derived from fMRI
time courses, and presented a simple algorithm to con-
struct an estimate of FC. The new estimator measures
accordances and discordances of co-activations and co-
deactivations of fMRI signals, separately, which makes our
estimator exhaustive compared to common FC estimators.
This might contribute to more complete interpretations
in brain function studies, and to better differentiate be-
tween brain states. One could extend the new estimator
to partial accordance and partial discordance as an anal-
ogy with correlation and partial correlation. We also pre-
sented a comparison study to detect group differences and
we showed how the detection sensitivity is increased when
using our new estimator. The sensitivity could be further
improved by using adaptive unimodal and multimodal sta-
tistical methods, such as those proposed in [6, 8, 9].
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