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Résumé – La prédiction de l’évolution d’un cancer permet d’adapter la planification d’un traitement thérapeutique, ce qui
rend le traitement plus efficace. Dans cet article, nous proposons d’utiliser les caractéristiques d’image extraites á partir des
images PET et des caractéristiques cliniques pour la prédiction. Compte tenu des imprécisions et des incertitudes dans les deux
sources d’information, une nouvelle méthode de prédiction basée sur la théorie des fonctions de croyance est proposée. Tout
d’abord, une fonction de perte avec une régularisation parcimonieuse est construite comme critère pour apprendre une métrique
de dissimilarité entre les vecteurs de caractéristiques des patients. Une réduction de dimension est ensuite effectuée. Grâce à
la contrainte parcimonieuse, l’influence des caractéristiques imprécises est réduite pour la prise de décision. Enfin, la métrique
apprise est intégrée dans le classificateur EK-NN (Evidential K-Nearest-Neighbor) pour effectuer la prédiction. La méthode
proposée a montré de bonne performance sur deux jeux de données relatives aux tumeurs du poumon et de l’œsophage.

Abstract – As a vital task in cancer therapy, outcome prediction is the foundation for tailoring and adapting a treatment
planning. In this paper, we propose to use image features extracted from PET and clinical characteristics. Considering that
both information sources are imprecise or noisy, a novel prediction model based on Dempster-Shafer theory has been developed.
Firstly, a specific loss function with sparse regularization was designed for learning an adaptive dissimilarity metric between
feature vectors of labeled patients. Through minimizing this loss function, a linear low-dimensional transformation of the input
features is then achieved; meanwhile, thanks to the sparse penalty, the influence of imprecise input features can also be reduced
via feature selection. Finally, the learnt dissimilarity metric is used with the Evidential K-Nearest-Neighbor (EK-NN) classifier
to predict the outcome. We evaluated the proposed method on two clinical data sets concerning to lung and esophageal tumors,
showing good performance.

1 Introduction

Accurate outcome prediction prior to or even during the
cancer treatment is of great clinical value, upon which
more effective treatment planning can be updated. Medi-
cal imaging plays a fundamental role in this task, since it
allows noninvasive monitoring of tumor lesions [5]. Some
research has proven that functional information provid-
ed by fluoro-2-deoxy-D-glucose (FDG) positron emission
tomography (PET) is predictable for response of thera-
py [10, 8]. Abounding image features can be extracted
from FDG-PET, such as standardized uptake values, e.g.,
SUVmax, SUVpeak and SUVmean, total lesion glycolysis
(TLG) and metabolic tumor volume (MTV) [10]. More-
over, texture analysis through PET images may also pro-
vide complementary predictive values [11]. The quantifi-
cation of these features before and during cancer thera-
py has been claimed to be predictable for treatment re-

sponse [5]. Nevertheless, their application is still ham-
pered by some practical difficulties. First, compared to
a relatively large amount of interesting features, we often
have just a small sample of observations in clinical study.
As a consequence, the predictive power of traditional s-
tatistical machine learning algorithms breaks down as the
dimensionality of feature space increases. Secondly, due
to system noise and limited resolution of PET, as well as
partly subjective quantification of clinical characteristics,
some of these interesting features are imprecise.

Dimensionality reduction is a feasible solution to the
issue discussed above. However, traditional methods, in-
cluding feature transformation methods (e.g., [4]) and fea-
ture selection (e.g., [12]), are not designed to work for
imperfect data tainted with uncertainty. As a power-
ful framework for representing and reasoning with uncer-
tainty and imprecise information, Dempster-Shafer theory
(DST) [9] has been increasingly applied in statistical pat-
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Fig. 1: Example tumor uptakes on FDG-PET imaging;
(a) recurrence and no-recurrence instances of lung tu-
mor; (b) disease-free and disease-positive instances of e-
sophageal tumor.

tern recognition [3, 6]. These facts motivated us to design
a DST-based prediction method for imprecise input fea-
tures and small observation samples.

To this end, and different with our former feature selec-
tion approach [7], a new feature transformation method
based on DST is proposed in this paper. We construct
a specific loss function with sparse penalty to learn an
adaptive low-rank distance metric for representing dis-
similarity between different patients’ feature vectors. A
linear low-dimensional transformation of input features is
then achieved through minimizing this loss function. Si-
multaneously, using the `2,1-norm regularization of learnt
dissimilarity metric in the loss function, feature selection
is also realized to reduce the influence of imprecise fea-
tures. At last, we apply the learnt dissimilarity metric in
the evidential K-nearest-neighbor (EK-NN) classifier [2]
to predict the treatment outcome.

The rest of this paper is organized as follows. The fun-
damental background on DST is reviewed in Section 2.
The proposed method is introduced in Section 3, after
which some experimental results are presented in Sec-
tion 4. Finally, Section 5 concludes this paper.

2 Dempster-Shafer Theory

DST is a framework for reasoning under uncertainty based
on the modeling of evidence [9]. More precisely, let ω be a
variable taking values in a finite domain Ω = {ω1, · · · , ωc},
called the frame of discernment. An item of evidence re-
garding the actual value of ω can be represented by a mass
function m from 2Ω to [0,1], such that

∑
A⊆Ωm(A) = 1.

Each number m(A) denotes a degree of belief attached to
the hypothesis that ”ω ∈ A”. Function m is said to be
normalized if m(∅) = 0, which is assumed in this paper.

Corresponding to a normalized mass function m, the
belief and plausibility function for all A ⊆ Ω are further
defined as:

Bel(A) =
∑
B⊆A

m(B); Pl(A) =
∑

B∩A 6=∅

m(B). (1)

Quantity Bel(A) represents the degree to which the ev-

idence supports A, while Pl(A) represents the degree to
which the evidence is not contradictory to A.

Different items of evidence can be aggregated to elabo-
rate beliefs in DST. Let m1 and m2 be two mass functions
derived from independent items of evidence. They can be
combined via Dempster’s rule to generate a refined mass
function:

(m1 ⊕m2)(A) =
1

1−Q
∑

B∩C=A

m1(B)m2(C) (2)

for all A ∈ 2Ω \∅, where Q =
∑

B∩C=∅m1(B)m2(C) mea-
sures the degree of conflict between m1 and m2.

3 Method

Let {(Xi, Yi)|i = 1, · · · , n} be a collection of n labeled pa-
tients, in which Xi = [x1, · · · , xv]T is the ith observation
with v input features, and Yi is the corresponding label
taking values in a frame of discernment Ω = {ω1, · · · , ωc}.

Firstly, we need to learn a dissimilarity metric d(Xi, Xj),
so as to maximize the prediction performance of the EK-
NN classifier on future testing patient. We regard this
problem as learning a transformation matrix A ∈ Rh×v ,
from which the distance d(Xi, Xj) is defined as

d(Xi, Xj) = (Xi −Xj)
TATA(Xi −Xj). (3)

Matrix A is further restricted to be of low-rank h (i.e.,
h� v), such that a low-dimensional linear transformation
of the input feature space can be learnt, making EK-NN
classifier more efficient.

In the DST framework, if Xi is a query instance, then
other labeled points in the training data set can be viewed
as partial knowledge regarding Xi’s prediction label. So,
each point Xj (6= i) with Yj = ωq is a piece of evidence
that increases the belief that Xi also belongs to ωq. This
piece of evidence can be quantified as a mass function{

mij(ωq) = exp (−d(Xi, Xj))

mij(Ω) = 1− exp (−d(Xi, Xj))
, (4)

where dissimilarity d(Xi, Xj) is measured via Equation (3).
After modeling the evidence for all training samples (ex-

cept Xi) using Equation (4), they are further allocated
into different groups Γq (q = 1, . . . , c) according to cor-
responding class labels. Then, after combination using
Dempster’s rule (Equation (2)), the mass function for each
group Γq is represented as{

m
Γq

i ({ωq}) = 1−
∏

j∈Γq
[1− exp {−d(Xi, Xj)}]

m
Γq

i (Ω) =
∏

j∈Γq
[1− exp {−d(Xi, Xj)}]

. (5)

The mass of belief m
Γq

i (Ω) for group Γq reflects the impre-
cision about the hypothesis that Yi = ωq. If any hypoth-
esis is true, the corresponding mass function should be
more precise. For instance, if the actual value of Yi is ωq,



Tab. 1: Prediction accuracy (both training and testing, in %) of EK-NN (K = 3) based on different dissimilarity metrics.
ELT-FS∗ and ELT∗ denote, respectively, the proposed method with/without the `2,1-norm sparse regularization.

Method
Lung Tumor Data Esophageal Tumor Data

training testing training testing
all features 69.50±4.46 60.00±50.00 63.73±2.14 61.11±49.44
PCA 81.50±5.25 76.00±43.60 56.90±5.81 58.34±50.00
LDA 100.00±0.00 52.00±50.99 100.00±0.00 55.56±50.40
NCA 99.50±1.83 80.00±40.82 94.21±3.24 69.44±46.72
ELT∗ 95.83±3.80 88.00±33.17 88.02±4.03 63.89±48.71
ELT-FS∗ 100.00±0.00 88.00±33.17 97.46±1.64 83.33±37.80

this imprecision should then close to zero, i.e., m
Γq

i (Ω) ≈
0; in contrast, imprecision pertaining to other hypotheses
should close to one, i.e., mΓr

i (Ω) ≈ 1, for ∀r 6= q. Based
on this idea, we propose to represent the prediction loss
for training sample (Xi, Yi) as

lossi =

c∑
q=1

ti,q · {1− [1−mΓq

i (Ω)] ·
c∏

r 6=q

mΓr
i (Ω)}2, (6)

where ti,q is the qth element of a binary vector ti =
{ti,1, . . . , ti,c}, with ti,q = 1 if and only if Yi = ωq.

As a result, for all training samples, the loss function
with respect of the transformation matrix A can be ex-
pressed as

l(A) =
1

n

n∑
i=1

lossi + λ||A||2,1, (7)

where lossi is calculated using Equation (6). Sparse regu-

larization ||A||2,1 =
∑v

i=1(
∑h

j=1A
2
i,j)

1/2 is added to select
features in order to limit the influence of imprecise input
features during the linear transformation. Scalar λ is a
hyper-parameter that controls the influence of the regu-
larization term.

A quasi-Newton method [1] is used to minimize Equa-
tion (7). After that, we apply the learnt matrix A in
Equation (3), and use the EK-NN classifier to predict the
treatment outcome of future testing patients.

4 Experimental Results

We compared the proposed method (called evidential low-
dimensional transformation with feature selection, i.e., ELT-
FS) with several linear transformation methods, name-
ly PCA, LDA and neighborhood component analysis (N-
CA) [4]. We used two real data sets:

1) Lung Tumor Data: Twenty-five patients with stage
II-III non small cell lung cancer were studied. 52 SUV-
based (SUVmax, SUVmean, SUVpeak, MTV and TLG) and
texture-based (gray level size zone matrices (GLSZM) [11])
features were extracted from corresponding PET images.
The definition of recurrence of tumor for patients at one
year after the treatment is primarily clinical with biopsy

and PET/CT. There were 19 patients with label recur-
rence, while the remaining six patients were labeled with
no recurrence (example images can be seen in Figure 1(a)).

2) Esophageal Tumor Data: Thirty-six patients with
esophageal squamous cell carcinomas were studied. We
have 29 SUV-based (SUVmax, SUVmean, SUVpeak, MTV
and TLG), GLSZM-based and patients’ clinical features
(gender, tumour stage and location, WHO performance
status, dysphagia grade and weight loss from baseline).
The disease-free evaluations include a clinical examination
with PET/CT and biopsies. So 13 patients were labeled
disease-free when neither loco regional nor distant tumor
recurrence is detected, while the remaining 23 patients
were labeled as disease-positive (example images can be
seen in Figure 1(b)).

The leave-one-out cross-validation (LOOCV) procedure
was used for evaluation. PCA, LDA, NCA were compared
with our ELT-FS. Each method learns a low-dimensional
transformation matrix A on training data set. The EK-
NN classifier was then used to predict class label of the
left testing instance. Parameter K of EK-NN was set as 3.
Hyper-parameter λ used in our ELT-FS was determined
using a rough grid search strategy. For PCA, NCA and
ELT-FS, the dimension of transformed feature space was
chosen between two to five according to the minimum av-
erage testing error. Finally, the average classification ac-
curacy for all methods are summarized in Table 1. Exper-
iments with all features and our method without feature
selection (namely ELT with λ = 0 ) are also presented
for comparison. It can be observed that our method, e-
specially ELT-FS, leads to higher testing performance in
both cases.

Furthermore, we visualized the dimension reduction in
2D achieved using the PCA, NCA, ELT and ELT-FS meth-
ods, as shown in Fig. 2. It can be seen that different classes
in both data sets are better separated by our method than
using other methods. The best separation is achieved us-
ing our method with feature selection (ELT-FS).

5 Conclusion

In this study, a novel approach based on DST has been
proposed to predict the outcome of a cancer treatment
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Fig. 2: Two-dimensional transformation results of PCA, NCA, our ELT (without feature selection, i.e., λ = 0) and
ELT-FS. All observations were studied in both data sets.

using PET image features and clinical characteristics. A
specific loss function has been designed to take into ac-
count problems of uncertainty and imprecision, so as to
learn an adaptive dissimilarity metric for EK-NN classi-
fier. We have realized a low-dimensional linear transfor-
mation of input feature vectors. Simultaneously, thanks
to the `2,1-norm sparse regularization, a feature selection
procedure has been performed to reduce the influence of
imprecise input features. Experimental results obtained
on two clinical data sets show that the proposed method
performs well. In the future, we will further evaluate it on
more and larger data sets with different types of tumors,
and study the influence of the parameter λ.
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