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Résumé – La méthode du profil des coefficients dominants est un formalisme multifractal permettant d’obtenir des spectres non nécessairement
concaves ou croissants. Notre algorithme peut détecter la présence de processus distincts dans un même signal. Nous présentons ici les premiers
résultats obtenus.

Abstract – The leaders profile method is a multifractal formalism that allows to compute non-concave and non-increasing spectra. Our
implementation can detect the presence of distinct processes in a signal. We present here the first results obtained.

1 Introduction
We present a new approach to study the pointwise regularity

of signals. Let us recall some usual concepts.

Definition 1 Let f : Rn → R be a locally bounded function
and x0 ∈ Rn; f belongs to the Hölder space Λα(x0) (with
α ≥ 0) if there exist a constant C > 0 and a polynomial P of
degree less than α such that

|f(x)− P (x)| < C|x− x0|α (1)

in a neighborhood of x0. As usual, a function f belongs to
Λα(Rn) if f belongs to Λα(x0) for any x0, the constant C in
(1) being uniform.

A notion of regularity of f at x0 is given by the Hölder expo-
nent of f at x0; it is defined by

hf (x0) = sup{α ≥ 0 : f ∈ Λα(x0)}.
Computing this exponent is very difficult and sometimes im-
possible. It is easier to get a global information about the point-
wise regularity using the notion of the Hölder spectrum func-
tion.

Definition 2 The Hölder spectrum of a function f is the func-
tion

df : [0,+∞]→ {−∞} ∪ [0, n],

h 7→ dimH{x ∈ Rn : hf (x) = h},
where dimH is the Hausdorff dimension.

Computing the Hölder spectrum by directly using the defini-
tion given above is impossible in most of the practical cases,
but there exist heuristic methods to estimate df that give sat-
isfactory results in many situations. A method was first pro-
posed by Parisi and Frisch [14]; later, Arneodo et al. proposed a
similar method based on the continuous wavelet transform [2].

In both approaches, the decreasing part of the spectrum can-
not be obtained. To take care of this problem, Arneodo at
al. proposed the wavelet transform modulus maxima (WTMM)
method [13], using the notion of line of maxima in the wavelet
transform. This technique proved helpful in many practical
problems, but in theory, it cannot be linked to a functional
space. This is why Jaffard replaced the continuous wavelet
transform with the discrete one and introduced the wavelet lead-
ers method (WLM) [9, 10]. When comparing the WTMM with
the WLM, numerical results are similar [11], but the WLM al-
lows to obtain an upper bound of the Hölder spectrum of f if
f ∈ Λα(Rn) for some α > 0 [9].

In the methods presented above, the spectrum is obtained by
applying an inverse Legendre transform and so is necessarily
concave. However, it is possible to compute functions whose
spectrum is not concave. To overcome this second problem,
Jaffard introduced a multifractal formalism based on the so-
called Sν spaces [8], whose definition involves discrete wavelet
coefficients. This method has been implemented and allows to
effectively recover non-concave spectra [12]. But the problem
encountered with the first approaches reappears: one cannot ac-
cess the decreasing part of the spectrum through the Sν spaces.
To tackle this, the idea is to replace the wavelet coefficients
in the definition of Sν with the wavelet leaders. These new
spaces are called Lν spaces [4]. By doing so, one defines a
new multifractal formalism that leads to the detection of non-
increasing and non-concave spectra, called the leaders profile
method (LPM). From a theoretical point of view, this new ap-
proach is better than the previous methods [6] and it is comple-
mentary to the WLM in practice [1, 6].

In section 2, we recall the notion of wavelet leader and we
give an implementation of the LPM. In section 3, we present
the LPM on several numerical examples, and we show that our
implementation allows a more precise study of a signal com-
pared to other methods; we can detect the coexistence of two
processes in a signal.



2 The leaders profile method

2.1 The discrete wavelet transform and the wave-
let leaders

Under some general assumptions [5], there exist a function
φ and 2n−1 functions (ψ(i))1≤i<2n , called wavelets, such that
for any f ∈ L2(Rn), we have

f(x) =
∑
k∈Zn

Ckφ(x−k)+
∑
j∈N

∑
k∈Zn

∑
1≤i<2n

c
(i)
j,kψ

(i)(2jx−k),

where
c
(i)
j,k = 2nj

∫
Rn

f(x)ψ(i)(2jx− k) dx

and
Ck =

∫
Rn

f(x)φ(x− k) dx.

On the torus Rn/Zn, we will use the periodized wavelets

ψ(i)
p (2jx− k) =

∑
l∈Zn

ψ(i)(2j(x− l)− k)

to form a basis of the one periodic functions on Rn which lo-
cally belong to L2(Rn). The corresponding coefficients c(i)j,k
are naturally called the periodized wavelet coefficients. In the
sequel, we will use another notation, more practical, for the
wavelet coefficients. We denote by λ(i)j,k the dyadic cube

λ
(i)
j,k =

i

2j+1
+

k

2j
+ [0,

1

2j+1
)n.

We will omit any reference to the indices i, j and k for such
cubes by writing λ = λ

(i)
j,k. The set Λj will denote the set of

dyadic cubes λ of [0, 1]n with side 2−j and the wavelet coeffi-
cient c(i)j,k will be denote by cλ.

The wavelet leader associated to the cube λ is the quantity

dλ = sup
λ′⊂3λ

|cλ′ |.

2.2 Implementation of the LPM
The LPM provides an approximation of the Hölder spectrum

of f given by [4]

d̃Cf (h) =


lim
ε→0+

lim sup
j→+∞

log #E≥j (C, h+ ε)

log 2j
if h ≤ hs

lim
ε→0+

lim sup
j→+∞

log #E≤j (C, h− ε)
log 2j

if h ≥ hs
(2)

where Eϑj (C, h) = {λ ∈ Λj : dλ ϑ C2−hj} (ϑ ∈ {≤,≥}), C
is a constant strictly positive and hs is the smallest positive
number such that the function of the first line of (2) is equal to
n. The constant C appearing in (2) is arbitrary, i.e d̃Cf = d̃C

′

f

for any C,C ′ > 0 [6], and it is usually equal to 1. We denote
d̃1f by d̃f and it is called the leaders profile of f . We also set by
hmin = inf{h : d̃f (h) ≥ 0} and hmax = sup{h : d̃f (h) ≥ 0}.
It can be shown that the leaders profile does not depend on the
chosen wavelet basis [4].

The definition of d̃Cf (h) formalizes the idea that, if h ∈
[hmin, hs] (resp. h ∈ [hs, hmax]), there are about 2d̃

C
f (h)j wavelet

leaders larger (resp. smaller) than C2−hj for j “large enough”.
So, it is natural to approximate d̃Cf (h) by the slope of

j 7→
log #E≥j (C, h)

log 2
(resp. j 7→

log #E≤j (C, h)

log 2
) (3)

for j “large enough” if h ∈ [hmin, hs] (resp. h ∈ [hs, hmax]).
In practice, we fix a threshold for the correlation of the points
used to compute the slope: we only keep the points associ-
ated to a correlation coefficient higher than the threshold. The
impact of the choice of this threshold has been studied in [6].
From now on, the notation d̃Cf (h) will refer to this slope.

To determine the value of hs, we proceed as follows: we be-
gin with h equal to 0 and use E≥j (C, h) to approximate d̃f (h).
We then increase h until the detected value of d̃f (h) is close to
n. The estimated value of hs will be equal to this last h and for
larger h, we use E≤(C, h).

To compute an approximation of d̃f (h) using the values d̃Cf (h),
it is important to understand that the main difference between
theory and practice lies in the choice of the constantC in d̃Cf (h).
In theory, the constant can be chosen arbitrarily. It is not true
in practice because we only have access to a finite number of
wavelet leaders. If the typical value of wavelet leaders is too
large (resp. too small) with respect to C, too many (resp. not
enough) of them will be taken into account, so that the value
d̃Cf (h) will be very different from the theoretical value d̃f (h).

Consequently, for a fixed h > 0, we construct the function

C > 0 7→ d̃Cf (h)

to approximate the value of d̃f (h). If h ≤ hs (resp. h > hs)
this function should be decreasing (resp. increasing). If h ∈
[hmin, hmax], it should exist an interval I for which the values
d̃Cf (h) with h ∈ I are close from each other. We take the mean
of these values as an approximation of d̃f (h) and use a gradient
descent to detect this interval [12, 6].

3 Numerical simulations
The efficiency of the implementation described in the pre-

vious section has already been presented in [6]. It has been
shown that the function

C > 0 7→ d̃Cf (h)

allows to approximate the Hölder spectrum of f in h. In this
section, we show that this function can give some additional
information about the signal. This fact has been discovered
during the study of the binomial cascade after a thresholding.

Definition 3 The binomial cascade of parameter p ∈ (0, 1) is
the only Borel measure µ defined on [0, 1] such that

µ
(
[

n∑
k=1

εk
2k
,

n∑
k=1

εk
2k

+
1

2n
)
)

= p
∑n
k=1 εk(1− p)n−

∑n
k=1 εk ,

for all n ∈ N and εk ∈ {0, 1} (k ∈ {1, ..., n}).



The method of threshold of order γ > 0 consists in replac-
ing the wavelet coefficients cλ by ctλ = cλ1|·|≥2−γj (cλ). In
Figure 1, we illustrate the spectrum of a binomial cascade after
a thresholding. It is non-concave [16]. 1
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Figure 1: Comparaison between the spectrum of a binomial
cascade of parameter p = 0.38 (dotted black) and its threshold
of order γ = 1.15

In Figure 2, several examples of functions C > 0 7→ d̃Cf (h)
are represented for different values of h. Recall that in order
to compute dCf (h), we use the approximation of the increasing
part of the spectrum, i.e. the first function defined by (3).1
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Figure 2: Function C 7→ d̃Cf (h) where h = 0.85 (above) and
h = 0.9 (below) for the increasing part of the spectrum of
a cascade of parameter p = 0.38 with a threshold of order
γ = 1.15

While studying the function C 7→ d̃Cf (h) with h > γ for
the approximation of the decreasing part of the threshold cas-
cade, i.e. the second function defined by (3), we have noticed
two stabilizations. The highest corresponds to the theoretical
value, while the smallest corresponds to the cascade without
the threshold. In Figure 3, several examples are represented.

The presence of two stabilizations can be explained as a nu-
merical phenomenon. The threshold replaces the small coeffi-
cients by 0. So, the value of dCf (h) (recall that it depends on
the number of coefficients smaller than C2−hj) for small C re-
flects this modification. On the opposite, the value of dCf (h)
for large C is less affected by this change and allows to detect
the presence of the original cascade.

The theoretical spectra of a binomial cascade with a thresh-
old are compared with the spectra obtained by LPM and WLM
in Figure 4. The different values of the second stabilization are
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Figure 3: Function C 7→ d̃Cf (h) where h = 1.19 (above) and
h = 1.23 (below) for the decreasing part of the spectrum of
a cascade of parameter p = 0.38 with a threshold of order
γ = 1.15

also represented. We see that LPM underestimates the theoret-
ical spectrum but detects the non-concave part of the spectrum
of the threshold function and sees the presence of the original
cascade. WLM does not detect this non-concave part. 1
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Figure 4: Spectrum of a cascade of parameter p = 0.38 with
a threshold of order γ = 1.15. Black (resp. red and blue) the-
oretical spectrum (resp. LPM and WLM). Dotted black (resp.
red) theoretical spectrum of a cascade of paramater p = 0.38
(resp. the smallest stabilization detected with LPM)

Now, let us study a Lévy process. It is a stochastic pro-
cess with independent and stationary increments that is right-
continuous and admits almost surely a left limit at all points.
It is for example used in the field of financial modeling [15].
Any Lévy process can be decomposed into the sum of a (pos-
sibly vanishing) Brownian part and an independent pure jumps
process. In this work, we study a Lévy process with a Brow-
nian part. Recall that a Lévy process is associated to an index
β ∈ [0, 2], called the Blumenthal and Getoor lower index, that
governs the multifractal properties of the process [7]. More
precisely, if the process has a Brownian part, the associated
Hölder spectrum is non-concave and, almost surely, is equal to

df (h) =

{
βh if h ∈ [0, 1/2)
1 if h = 1/2

.

To simulate a Lévy process with a Brownian part, we create a
Lévy process without Brownian part and a Brownian motion
is then added. In Figure 5, we have represented the function
C 7→ d̃Cf (h) for the approximation of the increasing part of the
spectrum. For h ≤ 0.5, we only see the Lévy process. For



h > 0.5, there are two stabilizations, corresponding to one of
the processes used to construct the signal: the Lévy process
without Brownian part and the Brownian motion. The highest
stabilization corresponds to the theoretical value. Moreover,
the smallest stabilization corresponds to the Lévy process with-
out Bronwian part. 1
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Figure 5: Functions C 7→ d̃Cf (h) with h = 0.45 (above) and
h = 0.65 (below) for a Lévy process with a Brownian part
(β = 1.3)

In Figure 6, the theoretical spectrum is compared with the
spectrum obtained with LPM and WLM. The smallest stabi-
lization is also represented for h > 0.5. First, we see that
the WLM tends to determine a strictly concave spectrum while
LPM fit the theoretical spectrum better. Secondly, the spectrum
of the Lévy process without Brownian part used to simulate the
Lévy process with a Brownian part is detected. 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sp
ec

tr
um

h

Figure 6: Spectrum of a Lévy process with a Brownian part
(β = 1.3). Black (resp. red and blue) theoretical (resp. LPM
and WLM) spectrum. Dotted red the detection of the spectrum
of the associated Lévy process without Brownian part. The
results are obtained on 50 simulations of size 220

4 Conclusion

The LPM allows to have an efficient way to approximate a
Hölder spectrum and detects the non-concave part of this spec-
trum. Moreover, our implementation provides a method to de-
tect the presence of several processes in a signal. Its devel-
opment must be pursued. It would be interesting to mix sev-
eral processes coming from practice (for example geometric

Brownian motion, Cascade of Mandelbrot, ...) and to apply our
method. It will also be tested on real-life signals, for example
on financial data feeds.
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