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Résumé – Les modèles à espaces d’états gouvernés par une châıne de Markov cachée sont utilisés dans de nombreux domaines
appliqués comme le traitement de signal, la bioinformatique, etc. Cependant, il est souvent difficile d’établir leur identifiabilité,
propriété essentielle pour l’estimation de leurs paramètres. Dans cet article, nous traitons un cas simple pour lequel l’état continu
inconnu et les observations sont des scalaires. Nous démontrons que lorsque la châıne de Markov est irréductible et apériodique,
une information a priori reliant les observations et l’état continu inconnu à un instant t0 suffit pour assurer “l’identifiabilité
générale” de l’ensemble des paramètres du modèle. Nous montrons aussi qu’en intégrant ces contraintes dans un algorithme EM,
les paramètres du modèle sont estimés efficacement.

Abstract – While switching Markov state-space models arise in many applied science applications like signal processing,
bioinformatics, etc., it is often difficult to establish their identifiability which is essential for parameters estimation. This paper
discusses the simple case in which the unknown continuous state and the observations are scalars. We demonstrate that if a
prior information relating the observations to the unknown continuous state at a time t0 is available, and if the Markov chain is
irreducible and aperiodic, the set of the model parameters will be “globally structurally identifiable”. In addition, we show that
under these constraints, the model parameters can be efficiently estimated by an EM algorithm.

1 Introduction

One way of modeling changes in a time series consists
of considering that the underlying dynamics of the sys-
tem changes discontinuously at unknown points in time,
indexed by a hidden discrete random variable. In this pa-
per, we are interested in Switching Markov State-Space
Models (SMSSM) which are widely used in several fields
of applied science such as signal processing [1], economet-
rics [2] and bioinformatics [3]. A SMSSM can be viewed as
a Linear Gaussian State-Space Model (LGSSM) with pa-
rameters indexed by a latent Markov chain, or as a Hidden
Markov Model (HMM) with two latent states: a continu-
ous system state, and a discrete Markov state.

For latent structure models, the parameters inference
can fail due to identifiability issue. Leroux [4] establishes
a sufficient condition for the HMM identifiability. For the
LGSSM, the identifiability issue can be addressed by im-
posing some structural constraints on its parameters [5],
or by taking it into account in the parameters inference
algorithm [6].

We consider here a SMSSM where the unknown contin-
uous state and the observations are scalars. We show that,
if the hidden Markov chain is irreducible and aperiodic,
a prior information relating the observations to the un-

known continuous state at a time t0, for instance t0 = 0, is
sufficient to ensure the identifiability of the model. More-
over, we check the relevance of these constraints by esti-
mating the parameters of a SMSSM using a penalized EM
algorithm. In this purpose, a SMSSM modeling the state
of charge of an electric battery is considered. The results,
using real electric vehicle data, show that the parameters
are efficiently estimated.

The paper is organized as follows. Section 2 presents
the model and the identifiability issue. In Section 3, the
identifiability of a LGSSM is addressed. In Section 4,
the previous identifiability result is extended for SMSSM.
Section 5 shows the relevance of these constraints using
real electric vehicle data. Section 6 concludes the paper.

2 Problem formulation

2.1 Model

Let st denote a discrete irreducible and aperiodic Markov
chain on {1, . . . , κ}, with initial distribution Π and transi-
tion matrix P . We consider a stochastic process (yt, xt, st)
where yt is observable, and st and xt are unobservable.
This process is defined by a switching Markov state-space



model

xt = A(st)xt−1 +B(st)ut + ωt, (1)

yt = C(st)xt +D(st)ut + εt, (2)

where ut denotes a known exogenous input, and ωt and
εt are independent Gaussian white noises with variances
σ2
X(st) and σ2

Y (st) respectively. The observations yt are
assumed to be independent given (st, xt). It is also as-
sumed that x0 is fixed and that the initial distribution Π
is known. For simplicity, we consider that xt and yt ∈ R.
Let Θ denote the vector of parameters

Θ = {P,Γ = (A(s), B(s), C(s), D(s), σX(s), σY (s))} (3)

for s = 1, . . . , κ. The distributions p(xt | xt−1, st,Θ) and
p(yt | xt, st,Θ) are assumed to be Gaussian, with parame-
ters deduced from (1) and (2). It is noteworthy that given
a specific sequence of Markov states s0:T = {s0, . . . , sT },
the likelihood p(y0:T | s0:T ,Γ) is

p(y0:T |s0:T ,Γ) = p(y0|s0,Γ)

T∏
t=1

p(yt | y0:t−1, s0:t,Γ), (4)

where yt | y0:t−1, s0:t,Γ ∼ N (yt; yt|t−1,Ωt|t−1), with yt|t−1

and Ωt|t−1 deduced from (2)

yt|t−1 = C(st)xt|t−1 +D(st)ut, (5)

Ωt|t−1 = C(st)Σt|t−1C(st)
′ + σ2

Y (st). (6)

The variables xt|t−1 and Σt|t−1 are deduced from (1)

xt|t−1 = A(st)xt−1|t−1 +B(st)ut, (7)

Σt|t−1 = A(st)Σt−1|t−1A
′(st) + σ2

X(st), (8)

with xt−1|t−1 and Σt−1|t−1 given by the correction step of
a Kalman filter

xt−1|t−1 =xt−1|t−2 +Kt−1(yt−1 − yt−1|t−2), (9)

Σt−1|t−1 =(I −Kt−1C(st−1))Σt−1|t−2(I −Kt−1C(st−1))′

+Kt−1σ
2
Y (st−1)K ′t−1, (10)

where I is the identity matrix with an appropriate dimen-
sion and Kt−1 is the Kalman gain [7] given by

Kt−1 = Σt−1|t−2C(st−1)Ωt−1|t−2. (11)

2.2 Identifiability issue

The SMSSM, among many other mathematical models,
is used to describe the dynamics of a given system using
experimental data and understand observed phenomena.
Indeed, it is desirable that every model parameter has
a physical interpretation in order to easily integrate any
prior knowledge and interpret the results of this modeling.
Among the major issues arising from this modeling, this
paper focuses on the identifiability one, which is essen-
tial for parameters estimation. According to the classical
definition, a subset of parameters F ⊂ Θ is said “glob-
ally structurally (g.s.) identifiable” when p(y0:T |Θ∗) =

p(y0:T |Θ) implies F ∗ = F . However, it is well-known that
a SMSSM is unidentifiable and constraints must be im-
posed to guarantee its identifiability, i.e. its interpretabil-
ity. As a first step, we consider the identifiability of a
LGSSM.

3 Identifiability of a LGSSM

Let us consider the LGSSM described by (1)-(2) with
κ = 1. Each minimal representation of this model can
be deduced from Γ by a state-space linear transformation
H, which leads to the following system of equations

A∗ = H · A ·H−1

B∗ = H · B
C∗ = C · H−1

σ2
X
∗

= H · σ2
X ·H,

(12)

whereH ∈ R. It has to be noted thatD and σY are always
g.s. identifiable, i.e. they are invariant under any linear
transformation H. And, A is also g.s. identifiable since
H ∈ R. The following prior information is considered at
t0 = 0

y0 = Cx0 +Du0, (13)

with x0 · u0 6= 0. Under (13), it is easily proved that the
only solution of (12) is H = 1. Thus, the parameters of
a LGSSM are g.s. identifiable under the constraint (13).
In the following, this identifiability result is extended for
SMSSM.

4 Identifiability of a SMSSM

First of all, it is noteworthy that Markov states st can
be relabeled without changing the distribution of the ob-
servations. Thus, the identifiability of the SMSSM, up to
state switching, is discussed below.

4.1 Specific sequence of Markov states

As a first step, we consider that the sequence of Markov
states s0:T is known. It is assumed that at t0 = 0

y0 = C(s0)x0 +D(s0)u0, (14)

for any hidden state s0 = 1, . . . , κ. Similarly to a LGSSM,
each minimal representation of the model can be deduced
from Γ by a state-space linear transformation H where

H = [H1 H2 . . . Hκ], (15)

with H ∈ Rκ. Indeed, given a specific Markov sequence
s0:T , the model can be transformed into κ LGSSMs with
appropriate sampling times. Hence, D(s), σY (s) and A(s)
are g.s. identifiable for s = 1, . . . , κ, since they are invari-
ant under any linear transformation Hs. In addition, the
remaining parameters of these κ LGSSMs are g.s. iden-
tifiable under the constraint (14), as shown in Section 3.
Accordingly given a specific Markov sequence s0:T , the



parameter Γ of a SMSSM with κ ≥ 1 is g.s. identifiable
under constraints (14), and

p(y0:T |s0:T ,Γ) = p(y0:T |s0:T ,Γ
∗) ⇒ Γ = Γ∗. (16)

The next section discusses the identifiability of a SMSSM
when the sequence of Markov states is unknown.

4.2 Unknown sequence of Markov states

The marginal likelihood of the SMSSM (1)-(2) is given by

p(y0:T | Θ) =
∑

s0:T∈S
p(s0:T |P ) · p(y0:T |s0:T ,Γ), (17)

where S = {1, . . . , κ}T+1 and p(y0:T |s0:T ,Γ) is a Gaussian
distribution whose parameters are recursively calculated
(Section 2). Thus p(y0:T | Θ) is a finite convex combinai-
son of Gaussian distributions. Following the line of proof
in [8], we have

p(y0:T |Θ) = p(y0:T |Θ∗)⇒ (18)

1)p(y0:T |s0:T ,Γ) = p(y0:T |s0:T ,Γ
∗)

2)p(s0:T |P ) = p(s0:T |P ∗).

Under the constraints (14), the first equation implies that
Γ = Γ∗. Since st is an irreducible aperiodic Markov chain,
the second equation implies that P = P ∗ cf. Lemma 2 in
[4]. As a result, we have the following proposition.

Proposition 1
The parameters of the SMSSM (1)-(2) are g.s. identifiable
if the following constraints are verified

1. A prior information at t0 = 0 is available:

y0 = C(s)x0 +D(s)u0 with s = 1, . . . , κ and x0 · u0 6= 0,

2. ∀(i, j), P (i, j) 6= 0.

Condition 2 implies that the hidden Markov chain is ir-
reducible and aperiodic. In the next section the parame-
ters of a SMSSM are estimated, under the proposed con-
straints, by the Maximum Likelihood (ML) methodology
through the EM algorithm.

5 ML parameters inference

When faced with an identifiability problem, ML methods
could fail to efficiently estimate the model parameters. In
the following, we show that, since the identifiability issue
is solved under the constraints (14), the ML parameter
estimation works properly. The EM formulas are not de-
tailed here. They are presented for instance in [9, 10].

The EM algorithm consists of iteratively estimating the
parameter Θ by maximizing the expected log-likelihood
of the complete data. Here this maximization must be
conducted under the constraints (14). This is summa-
rized in Algorithm 1. The Lagrangian associated to the

Algorithm 1 EM algorithm under constraints

Input ← y0:T , u0:T , x0,Π

Init Θ(0), k = 0

for k < kmax do

1- E-Step Compute

Q(Θ,Θ(k)) = Ey0:T ,Θ(k) [log pΘ (x0:T , s0:T , y0:T )]

2- M-Step

Θ(k+1) = argmax
Θ

Q(Θ,Θ(k)) while ∀s = 1, . . . , κ

y0 − C(s)x0 −D(s)u0 = 0 and
∑
j P (s, j) = 1

end for

Output ← Θ(k)

constraints is

L(Θ, λ, µ) =Q(Θ,Θ′) +

κ∑
i=1

λi[1−
∑
j

P (i, j)]

+

κ∑
i=1

µi[y0 − C(i)x0 −D(i)u0], (19)

where λi and µi are the Lagrangian multipliers. Cancel-
ing the derivative equations of L(Θ, λ, µ) w.r.t. Θ requires
performing summations over up to κT+1 values of s0:T .
Actually, the optimal estimation of the unknown states of
a SMSSM is a well-known NP problem [10]. To overcome
this, a Monte Carlo (MC) approximation of the EM al-
gorithm is generally developed [10]. It consists of using
a set of N “particles” {si0:T }Ni=1 and importance weights

{wiT }Ni=1, such that ∂Q(Θ,Θ(k))/∂Θ is estimated by

N∑
i=1

wiT
∂

∂Θ
Esi

0:T
,y1:T ,Θ

(k) [log pΘ(x0:T , s
i
0:T , y1:T )]. (20)

We illustrate the validity of these constraints using real
electric vehicle data. A SMSSM of the State of Charge
(SoC) of an electric battery, using voltage and current
measurements, is considered. Indeed, the battery dynam-
ics randomly changes according to uncontrolled usage con-
ditions such as ambient temperature and driving behavior.
The problem consists of estimating the parameters of this
model using the proposed MC-EM algorithm. The obser-
vation and the transition equations are based on physical
models [11], and the corresponding SMSSM is given by

xt = xt−1 +B(st)ut + ωt,

yt = C(st)xt +D1(st)ut +D2(st) + εt, (21)

where yt is the observed voltage, ut the input current and
xt the SoC to be estimated. Here, A(s) is physically iden-
tified: ∀s, A(s) = 1. In addition, we have a physical prior
information at t0 = 0

y0 = C(s0)x0 +D2(s0), (22)

where y0 is the Open Circuit Voltage (OCV) measure-
ment and x0 its corresponding SoC. Indeed, in practice at



B C D1 D2 σX σY
Ratio for s = 1 7.78 0.14 1.05 1 9.5 0.93
Ratio for s = 2 5.05 0.12 0.96 1 9.5 0.93
Ratio for s = 3 9.12 0.14 1.06 1 9.5 0.93

Tab. 1: Ratio of the parameters estimated without con-
straints to those with constraints, SMSSM (21) with κ = 3
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Fig. 1: Ratio of estimated xt (top) and yt (bottom) with-
out constraints to the one with constraints

t0 = 0, the battery is often in a resting state, and the SoC
can be efficiently calculated using an OCV/SoC relation-
ship. To verify the relevance of the proposed constraints,
the unknown parameters are estimated based on the pre-
sented MC-EM algorithm, using 200 particles, with as well
as without constraints (14). When the estimation is per-
formed without constraints, we impose an upper bound
to xt to avoid numerical problems. Experimental results
show that both marginal likelihoods p(y0:T | Θ) are equal.
Table 1 shows the ratio of the parameters estimated with-
out constraints to those estimated with constraints. It can
be seen that, as shown in (12), D and σY are invariant in
both cases, whereas C is divided and σX is multiplied by
H = 10. For B, the ratio must be theoretically equal
to H = 10. However, the experimental ratio is not fixed
which is not surprising since B describes the evolution of
the unknown xt. Figure 1 represents the ratio of estimated
xt and yt without constraints to the one with constraints.
The results show that the estimated yt is invariant whereas
xt is multiplied by H = 10. Thus, these results show that
under the proposed constraints, the penalized EM algo-
rithm efficiently estimates the parameters and that the
identifiability issue is resolved. It is noteworthy that, un-
der constraints, the order of magnitude of the estimated
parameters and xt is physically accurate; for instance the
estimated state of charge xt ∈ [0, 100].

6 Conclusion

This paper has addressed the identifiability of switching
Markov state-space models where the unknown continu-
ous state and the observations are scalars. We prove that,
in case of an irreducible and aperiodic Markov chain, if
a constraint relating the observations to the continuous
state at a time t0 is available, the model parameters be-
come generally structurally identifiable. In order to verify

the relevance of this proposition, a comparison between
ML parameters inference of a SMSSM, under and with-
out the proposed constraints, is performed. The results
show that, by considering the above constraints, the iden-
tifiability issue is resolved and the EM algorithm works
efficiently.
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