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1Centro de Matemática Aplicada, Universidad Nacional de San Martı́n,
Av. 25 de Mayo y Francia, B1650HMP, Gral. San Martı́n, Buenos Aires, Argentina

2Equipes de Traitement de l’Information et Systèmes (ETIS), ENSEA/ Université de Cergy-Pontoise
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Résumé – Le concept de caméra Compton a été introduit dans le but d’améliorer notablement la sensibilité des systèmes d’imagerie par rayon-
nement ionisant conventionnels équipés des collimateurs mécaniques. Dans ce cas, la formation d’images est modélisée par la transformation
de Radon sur des cônes dont l’axe pivote autour d’un point (TRCAP). Les données sont des projections coniques tridimensionnelles. Comme
l’inversion analytique de cette TRCAP n’est pas connue à l’heure actuelle, nous considérons, dans ce travail, une modalité particulière de caméra
Compton en deux dimensions dans laquelle les données enregistrées sont exprimées comme intégrales de la densité de radio-traceur sur des
lignes brisées en forme de lettre V ayant un axe pivotant autour d’un point fixe. La reconstruction d’images est réalisée par la méthode de
rétroprojection et par la décomposition en valeurs singulières tronquées. Les résultats de simulations sont présentés illustrant la viabilité de cette
nouvelle imagerie.

Abstract – Compton cameras have been proposed in order to increase sensitivity in conventional radiation imaging equipped with hole colli-
mators. However, one must deal directly with three dimensional conical projections, which poses the inversion problem for integral data on cone
surfaces which does not have so far an analytic solution. In an attempt to clarify this situation, we consider a new two-dimensional Compton
camera in which the data are collected as integrals of the radio-tracer on broken lines, actually rotating V-lines, whose vertex is on a circular
arch. In the absence of an inversion formula, we present simulation results obtained from a back-projection technique and truncated singular
value decomposition.

1 Introduction

Electronic collimation has been proposed in [1] with the ob-
jective of improving the efficiency of conventional tomogra-
phic emission systems equipped with hole collimators. In this
modalities, photons undergoing scattering are considered as noi-
se and rejected with the consequent inefficient usage of radia-
tion. In this configuration, high sensitivity detectors must be
used in order to get images based on the energy of scattered
photons [2, 3]. Nevertheless, these detectors may be expensive
and it would be difficult to integrate them as needed. New mo-
dalities should be explored in order to enable different configu-
rations of detectors. In this paper we present a new version of
Compton camera with two types of detectors : a single, central,
absorption detector and a circular array of scattering detectors.
Succinctly, the system operates as follows : a photon scattered
at the circular array is detected in coincidence with the central,
absorption detector. The measured energy gives information of
the angle of the incoming photon. A full set of measures may
enable an exact reconstruction of the object under study.

FIGURE 1 – Scheme and coordinates system used in the RVT .

2 A novel approach to a two-dimensional
Compton Camera

Consider a bounded-supported function f(r, θ) in polar co-
ordinates defined in the upper half-plane and representing an
object containing a non-uniform radioactivity source distribu-
tion. We study a new two-dimensional Compton camera with a



scattering detector in the form of half a circle of radius ρ and
a point-like absorption detector. Both detectors are centred at
the origin of coordinates O (see Fig. 1). The coincidence de-
tection of a scattering event on the semi-circle detector and of
an absorption atO, allows not only to know the angular coordi-
nate φ of the scattering site M , but also to register the number
of single scattered radiation at an energy E (i.e. the scattering
angle ω).

2.1 The Radon transform on Rotating V-lines
(RVT )

According to the process of generation of data described in
Sec. 2, the amount of radiation at O can be expressed as the
integral of the activity distribution on two half lines meeting
at M and making an angle ω with the line OM . The result is
a broken line with opening angle ω. The angle ω is measured
between each branch of the V-line and the symmetry axis as
it is shown in Fig. 1. Because of the fact that this symmetry
axis rotates around O, the transform is a Radon Transform on
Rotating V-lines (RVT ) and its expression is given by :
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where φ ∈ (0, π), ω ∈ (−π2 ,
π
2 ) and g(φ, ω) are the data mea-

sured at site φ corresponding to a scattering angle ω.

2.2 The Point Spread Function
The idea described above can be alternatively written as a

double integral by means of the Point Spread Function (PSFRVT ) :

g(φ, ω) =

∫ ∫
dr dθ PSFRVT (φ, ω|r, θ)f(r, θ). (2)

The PSFRVT is the impulse response of the operator RVT ,
the substitution f(r, θ) = 1

r δ(r− r0)δ(θ− θ0) in (1) leads to :
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Clearly, because of the Delta functions in (3), the PSFRVT is
supported by a curve of equation :

ω = tan−1
(
± r0 sin(θ0 − φ)

ρ− r0 cos(θ0 − φ)

)
, (4)

in the plane (φ, ω). Singularities in (4) indicate the scanning li-
mits, i.e. an angular interval (φmin, φmax) where a given point
(r0, θ0) can project to. For additional discussion and examples
on support and scanning limits refer to [4].

3 Reconstruction Techniques

3.1 Back-projection
It is broadly known that in some line integral transforms,

inverse formulas can be written in the form of filtered back-
projection of the measurement data [2]. In this section we shall
apply a single (i.e. not filtered) back-projection algorithm in or-
der to obtain an approximate image reconstruction. First of all,
we describe the underlying idea of back-projection in the sim-
plest case (CRT). For a given angle ω, the back-projected image
Rw(x0, y0) is generated by assigning to the point (x0, y0) the
value that the projection takes at the position in the array de-
tector to which this point projects [5]. Afterwards all back-
projected images Rw(x0, y0) are integrated in order to obtain
the summation image yielding an approximate image of the ori-
ginal object. This integration procedure is often called summa-
tion of back-projections. Back-projection is an important in-
termediate step in many reconstruction algorithms [6], even
some older experimental computed tomography systems used
it as reconstruction technique [7]. Of course, it is necessary to
do this for every (x, y) in order to obtain the approximation
f̃(x, y) of the image. Nevertheless, extra filtering may be nee-
ded because f̃(x, y) is not the original image since the process
is not an exact inversion. Fig. 2 shows the extension of the geo-
metric idea for the case of theRVT . According to equation (1),
for a given scattering angle ω, point (x0, y0) in the figure pro-
jects to the detector at two angles : φ1 and φ2. It is intuitive and
straightforward to assign to the point (x0, y0) the sum of those
values corresponding to the projections at angles φ1 and φ2 as
in equation (5). The idea is the same as the one explained above
but, as the transform changes, the back-projection is the addi-
tion of projections at two points on the semi-circular scattering
detector :

Rw(x0, y0) = g (φ1, ω) + g (φ2, ω) . (5)

These angles correspond to the point at which the straight
lines meeting at point (x0, y0) cross the circular detector of
radius ρ. Let’s consider the central branches in Fig. 2, the right
branch of the green “V” and the left branch of the red “V”.
They intersect at (x0, y0) and its equations are : y = y0 + (x−
x0) tan(φ1 + ω) and y = y0 + (x − x0) tan(φ2 − ω). Taking
into account that both lines pass through the points (x0, y0) and
(ρ cosφ, ρ sinφ), where φ is φ1 and φ2 respectively, we arrive
to the following equation for φ1 :(

x0 − y0 cotω
y0 + x0 cotω

)(
cosφ1
sinφ1

)
= ρ. (6)



FIGURE 2 – Geometrical interpretation of back-projection

We obtained an equivalent expression for φ2, each of them
having two solutions. Using geometrical criteria, we obtain the
values for angles φ1 and φ2 :

φ1,2 = arctan
y0 ± x0 cotω
x0 ∓ y0 cotω

∓ arccos

 ρ√
(x0 ∓ y0 cotω)2 + (y0 ± x0 cotω)2

 . (7)

Then, having the angles φ1 and φ2, we are able to calculate the
back-projection (5). Finally, the approximate image is obtained
by integration of all back-projections labelled by ω :

f̃(x0, y0) =

∫ π
2

−π
2

dω Rω(x0, y0). (8)

3.2 Matrix Inversion
TheRVT as a Linear System The matrix formulation of the
direct problem described above reads :

g = Af . (9)

Here g is the projection vector, each of its components is
a projection value, and its size is NφNω × 1. Vector f re-
presents the object of interest, its size is equal to the number
of pixels N2 × 1, and finally A is the projection matrix of
size NφNω × N2. There is a strong link between (1) and (9)
since : columns in matrix A are generated with formula (3),
g = g(φ, ω), f = f(x, y) and the product Af represents the
RVT itself. The algebraic formulation can be understood as a
discrete version of equation (2).

Inversion Using Truncated Singular Value Decomposition
In the problem presented in the form (9), inversion consists in
finding the original function f from projection data g. The Sin-
gular Value Decomposition (SVD) is a non-iterative method
which enables algebraic inversion of Am×n (m ≥ n ) through
factorization in the form A = Um×m × Sm×n × V tn×n, where
U and V are orthogonal matrices whose columns are eigenvec-
tors of AAt and AtA respectively and S is a diagonal matrix
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FIGURE 3 – SVD spectrum of matrix A generated with the
PSFRVT formula.

FIGURE 4 – Projections : punctual sources (left) and Shepp-
Logan-like image (right).

containing the singular values of A. This factorization allows
us to write the pseudo inverseA† = V ×S−1×U t and thus the
inversion problem is solved. Sometimes, when matrix A is ill-
conditioned, it is possible to overcome the ill-posedness of the
problem through an appropriate truncation of the smallest sin-
gular values. This technique is called Truncated Singular Value
Decomposition (TSVD). For a detailed description of this me-
thod as well as its imaging applications see [8–10].

4 Numerical Simulations

In order to test the imaging capabilities of the new modality,
we performed numerical simulations. In this first stage, only
noiseless conditions were considered. A Compton camera with
Nφ = 128 elements in a semicircular detector of radius ρ = 13
was considered. The number of measured angles (energies) was
set to Nω = 128. Matrix A16384×4096 was generated using the
PSFRVT formula (3) where Dirac functions were approximated
using a symmetric-triangular function with unit area and sup-
ported in the interval (−0.05, 0.05). The nature of the inver-
sion problem was ill-posed. Although A was ill-conditioned
(k = 1.5 1020), its numerical rank was well-determined, see
classification in [8]. The gap in the SVD spectrum in Fig. 3



FIGURE 5 – Upper : original testing images, three points and
Shepp Logan. Middle : back-projections. Down : reconstruc-
tions using TSVD.

suggests that T=3818 is the best truncation index for pseudo-
inversion in TSVD, [10]. Projections were calculated using (9)
and are shown in Fig. 4. Two square images (N×N = 64×64)
were considered : an image inspired in the Shepp-Logan phan-
tom and a simpler image consisting of three-points (Fig. 5). Re-
constructions were performed using the two methods explained
above. Numerical integration in the back-projection algorithm
was carried out with a step ∆ω = 0.024. Matrix inversion was
performed using TSVD, with T = 3818. Figure 5 shows the
results of reconstruction for both cases.

5 Conclusions
According to the results obtained in numerical simulations,

this new two-dimensional Compton camera modality offers in-
teresting possibilities. There is still significant progress to be
done before it turns into a real exploitable imaging device. Al-
though images reconstructed using back-projection exhibit si-
gnificant blurring, results suggest that further work should be
done in order to find appropriate filters for a filtered back-
projection algorithm. Work in this direction is in progress. A
further study under more realistic conditions should be perfor-
med in order to determine the proper treatment to this problem
(dominant type of noise as well as denoising strategies). In ad-
dition, further studies in order to determinate the influence of
the physical features of the detection system should be done :
the radius ρ of the arch detector, the best number of energies

(Nω) and detectors (Nφ), etc. For comparison purposes, results
obtained with iterative algebraic methods can be found elsew-
here [4].

Acknowledgements
Javier Cebeiro research work is supported by a CONICET

grant, he also acknowledges support from Programa BEC.AR
for financial funding of a visit in 2015 to laboratory Equipes de
Traitement de l’Information et Sysèms (ETIS)-ENSEA / Uni-
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