
Compressed sensing MR image reconstruction using data-driven tight frame 

JIANPING HUANG
1,2

, LIHUI WANG
3
, CHUNYU CHU

1
, YANLI ZHANG

1
,WANYU LIU

*1,2
, YUEMIN ZHU

1,2
 

1
 HIT-INSA Sino French Research Centre for Biomedical Imaging, Harbin Institute of Technology 

1
Harbin, Heilongjiang, 150001, China 

2
 CREATIS, INSA Lyon 

2
 CREATIS; CNRS UMR5220; Inserm U1044; INSA Lyon, University of Lyon 

2
 Villeurbanne 69100, France 

3
 College of computer science and technology, Guizhou University 

3
 Huaxi District, 550025, Guiyang, China 

 

jianping829@gmail.com, wlh1984@gmail.com, chuchunyu@hit.edu.cn 

yanli.zhang@hit.edu.cn, Liu_wanyu@hit.edu.cn, zhu@creatis.insa-lyon.fr 

 

Résumé - L'acquisition comprimée (compressed sensing—CS) est une technique permettant de réduire le temps 

d'acquisition en imagerie par résonance magnétique (IRM) en sous-échantillonnant l'espace k. La parcimonie ou la 

compressibilité est la prémisse fondamentale de l'acquisition comprimée. Des transformations prédéfinies telles que 

la transformée en ondelettes discrète, les framelets et la shearlet ont été largement utilisées pour obtenir des 

représentations parcimonieuses. Nous proposons une nouvelle méthode de reconstruction des images IRM basée sur 

CS à l’aide de la technique de data-driven tight frame (data-driven TF). La méthode consiste à diviser une image 

IRM en patches, à apprendre une série de filtres en utilisant la technique de data-driven TF à partir de ces patches,  et 

à reconstruire l’image finale à l’aide de la technique de Fast Iterative Shrinkage Thresholding Algorithm (FISTA) 

avec un schéma itératif. Les résultats montrent que la méthode proposée convient à tous les schémas 

d’échantillonnage de l’espace k et améliore significativement la qualité de l’image par rapport aux méthodes de 

reconstruction des images IRM existantes. 

Abstract - Compressed sensing (CS) is a promising technique to reduce the acquisition time of magnetic resonance 

imaging (MRI) by using under-sampled k-space data. Sparsity or compressibility is the fundamental premise of the 

compressed sensing. The predefined transforms, such as the discrete wavelet transform (DWT), the framelets and the 

shearlet, have been widely used to provide sparse representations. This paper proposes a new CS reconstruction 

method for MR images using a data-driven tight frame (data-driven TF). The method consists of dividing the MR 

image into overlapping patches, learning a set of filters forming the data-driven TF from these patches, and 

reconstructing the final image using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) with an iterative 

scheme. The results show that the proposed reconstruction method is suitable for different sampling schemes, 

including variable density and radial k-space sampling, and improves significantly the image quality compared with 

existing CS-MR image reconstruction techniques.  

 

1 Introduction 

Magnetic resonance imaging (MRI) is a non-invasive 

medical imaging technique widely used in clinics. 

However, its imaging speed is limited by the amount of 

acquired data. Various approaches have been proposed 

to reduce the acquisition time of MRI as much as 

possible without degrading image quality [1, 2]. 

Recently, Compressed Sensing (CS) [3, 4] appeared 

as a new approach to reconstructing signals with high 

quality from significantly under-sampled data, and 

showed its great potential for accelerating MRI 

acquisitions [5, 6]. MR image reconstruction based on 

CS assumes that the image has a sparse representation 

in certain domain (pixel or transform domain). The total 

variation (TV) regularization and discrete wavelet 

transform (DWT) are widely used as sparsifying 

transforms for CS-MR image reconstruction [5, 7]. 

However, the TV regularization can cause blocking 

effect although the edges are preserved, and the 

traditional DWT fails to capture singularities in higher 

dimensional, such as edges and contours [8]. To 

overcome the disadvantages, multi-scale geometric 

analysis methods have been introduced into CS-MR 

image reconstruction, such as Contourlet [9], Framelets 

[10] and Shearlet [8]. 

Unlike the predefined transform, dictionary learning 

approaches learn an dictionary from the patches of a 

particular image or undersampled data itself for sparse 

image representation and have been shown to offer 

better reconstruction performance when applied to CS-

MR image reconstruction [11]. Taking into account the 

similarity between image patches, nonlocal processing 

was introduced for image restoration, such as nonlocal 

total variation (NLTV) [12]. Instead of using patch as 

the basic unit of sparse representation, a patch-based 

nonlocal operator was introduced for CS-MR image 

reconstruction [13]. It exploits the nonlocal self-

similarity of images, enabling this approach to achieve 

lower reconstruction error compared with the 

conventional CS-MRI reconstruction methods. 
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In this study, we present a new CS reconstruction 

method for MR images by introducing the data-driven 

tight frame (data-driven TF) proposed in [14]. The 

method consists of dividing the MR image into 

overlapping patches, learning a set of filters forming the 

data-driven TF from these patches, and reconstructing 

the final image using the Fast Iterative Shrinkage 

Thresholding Algorithm (FISTA) with an iterative 

scheme. 

The rest of the paper is organized as follows. The 

proposed CS-MRI reconstruction method is detailed in 

Section 2. The experiments are presented in Section 3, 

followed by some conclusions in Section 4. 

2 Theory and Algorithm 

Suppose x  is an MR image and uF  is a partial 

Fourier transform. The CS-MR image reconstruction 

problem is formulated as: 

  
2

2
argmin u
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x F x b R x      (1) 

where b  is the under-sampled measurements of the 

image x  in k-space,  R x  is a regularizing functional 

that represents additional constraints according to some 

prior knowledge in order to find the optimal solution, 

and 0   refers to a balancing parameter. 

Instead of predefined transforms, we use the data-

driven TF, which has been successfully used in [14] for 

image denoising problems, as sparsifying transforms for 

 R x . The data-driven TF aims to adaptively learn a 

set of filters from input data itself to sparsely represent 

data. Given an image x , a data-driven TF can be 

learned by solving the following minimization problem: 
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where   is the analysis operator and the rows of   

form a tight frame, c  is the coefficient vector that 

sparsely approximates the coefficients x , and 0   

is a regularization parameter. The algorithm for solving 

equation (2) is presented in Appendix A. More details 

about the data-driven TF can be found in [14]. 

By taking into account the above adaptive discrete 

tight frame, we reformulate the CS-MR image 

reconstruction method as:  
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Let  
2

2

1

2
uf x F x b  , which is a convex and 

smooth function with the Lipschitz constant L , and 

 
1

g x x    denoting a regularizing functional. 

Equation (3) can be solved using the Fast Iterative 

Shrinkage Thresholding Algorithm (FISTA) introduced 

in [15]. Specifically, the problem can be solved by a 

proximal mapping operation: 
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where   is the inverse of the Lipschitz constant L  of 
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 with T

uF  

indicating the inverse partial Fourier transform. 

The proposed algorithm is outlined as follows. 

INPUT： 

K  : the maximum number of iterations; 

n  : the filter size of data-driven TF;  

  : the regularization parameter; 

tol  : the tolerance parameter. 

INIT: 
1 0 11 , 1, 0, 0;t x r k

L
        

OUTPUT:  

x  : the reconstructed image. 

REPEAT: 

1;k k   

Generate the transform operator k  from kx  according to 

Equation (2): 
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3 Experimental Results 

To evaluate the performance of the proposed method, 

MR Coronal brain images of size 256 x 256 (Note: data 

from Ref. [7]) and two different sampling schemes (i.e. 

random variable density and radial sampling) are used 

(Figure 1). In Figure 1(b)-(f) are shown the k-space 

sampling masks, where the sample ratio in k-space is set 

to be approximately 15% (i.e. keeping 15% of the 

complete k-space data). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1: Reference MR image and k-space sampling masks with 

sampling rate of 15%. (a) Coronal brain MR image; (b) random 

variable density; (c) radial golden-angle; (d) randomly 

perturbed (c); (e) radial random sampling; (f) randomly 

perturbed (e). 



To quantitatively compare different methods, three 

quantitative indexes, including the peak-signal-to-noise 

ratio (PSNR), relative l2 norm error (RLNE) and mean 

structural similarity (MSSIM) [16] are calculated.  

The proposed method is also compared with three 

state of the art reconstruction methods used in CS-MRI: 

the FCSA [7], Shearlet+TGV [8] and PANOCS [13] 

methods.  

The observation measurement b  is corrupted by 

complex Gaussian white noise with an input SNR 

(ISNR). The associated ISNR is defined as 

 10ISNR 20log x n  , where x  and n  denote the 

standard deviation of the original image and the noise, 

respectively. The ISNR is set to 30 dB, the filter size 

4n   and the regularization parameter   is set as 

0.095 n . 

3.1 Visual Comparisons 

The MR images reconstructed using different 

methods are shown in Figure 2. Visually, the proposed 

method yielded better image quality than other three 

methods.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Results of reconstruction on Coronal brain MR images 

using sampling scheme in Figure 1 (b) with 15% sampling. 

Image reconstructed using (a) FCSA [7]; (b) Shearlet+TGV [8]; 

(c) PANOCS [13] and (d) Proposed. 

The quantitative assessment between the four 

methods is given in Tab 1. It can be seen that the 

proposed method exhibits better reconstruction quality 

than other three methods, by yielding higher PSNRs, 

smaller RLNEs, and greater MSSIMs. 

Tab 1 : Comparison of different reconstruction methods in 

terms of PSNR, RLNE and MSSIM using the sampling scheme 

in Figure 1(b) with 15% sampling. 

Method PSNR RLNE MSSIM 

FCSA 26.07 0.14 0.84 

Shearlet+TGV 27.21 0.13 0.87 

PANOCS 26.16 0.14 0.82 

Proposed 28.01 0.11 0.89 

3.2 Effects of Sampling Rates 

Figure 3 gives the performance comparison between 

the four methods using different sampling schemes with 

sampling rates of 10%~50%. It can be seen that the 

performance of our method is almost always better than 

other three methods, which implies that with the same 

image reconstruction quality, the proposed method 

requires only fewer samples and therefore allows 

reducing acquisition time significantly. 

 

(a) 

 

(b) 

 

(c) 

Figure 3: Performance comparisons (RLNE vs. different 

sampling rates) using different sampling schemes: (a) random 

variable density; (b) radial golden-angle; (c) radial random 

sampling. 

4 Conclusion 

We have proposed a new method for CS-MR image 

reconstruction using a data-driven tight frame (data-

driven TF). The latter provides a better sparse 

approximation of MR images, which has allowed us to 

achieve better reconstruction performance. The involved 

optimization problem is efficiently solved by a first-

order fast method. The results demonstrated that the 

proposed method can be applied to different sampling 



schemes and improves the reconstruction quality 

compared to state of the art CS-MRI reconstruction 

methods.  

Appendix A 

The algorithm for solving equation (2) is found below. 

INPUT: An image x . 

INIT: Initialize tight frame filter  
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UNTIL k K  . 
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