Signal reconstruction from a bio-inspired event-based code
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Résumé — Cet article présente une nouvelle architecture bio-inspirée pour encoder, puis décoder, un signal 1D. Un filtrage spatio-temporel est
appliqué au signal d’entrée afin de le décomposer en plusieurs composantes. Ensuite, chaque composante est échantillonnée par un neurone du
type “integre-et-tire”. Cet échantillonneur produit ainsi un train d’impulsions pour chaque composante, ce qui équivaut a quantifier le signal
d’entrée. Nous prouvons alors que le signal d’entrée peut étre reconstruit a partir des trains d’impulsions. Cette reconstruction s’appuie prin-
cipalement sur le fait que le filtre spatio-temporel proposé a une structure de frame. Des simulations numériques montrent 1’efficacité de cette
nouvelle architecture bio-inspirée.

Abstract — This paper introduces a novel and complete architecture of a bio-inspired codec which is applied to a 1D-signal. The result of this
filtering is a spatiotemporal decomposition of each component of the input signal which is fed to a Non Leaky Integrate and Fire (NLIF) sampler.
The NLIF sampler is a quantizer of the input signal. Using a threshold we are able to turn the quantized signal into a sequence of spikes, which
is called spike train. The number of spikes is related to the amplitude of the signal. We prove that we can estimate the quantized signal based
on the spike trains. In addition, based on frame theory we prove that the retinal filter has a frame structure, so it is invertible and enables the

reconstruction of the input signal. Numerical results show the performance of our architecture.

1 Introduction

Compression has been one of the most challenging research
fields for the last decades. An efficient compression algorithm
manages to convert the input signal into another and more com-
pact form of data for transmition or storage needs. At the same
time, this kind of algorithms guarantee high reconstruction qua-
lity. The more complicated the signal is (i.e video) the more the
constraints and the difficulties one has to encounter to find the
trade-off between the compression ratio of the code and the
quality of the reconstruction.

There have been many qualitative standards for image and
video compression which have been released during the last de-
cades [1, 2]. However, the most recent the standard is, the more
its complexity increases without a dramatic improvement in the
compression ratio. At the same time, it is required a significant
number of years in order to release a new standard. As a result,
there is a general feeling that a novel and groundbreaking ar-
chitecture should be released, which is going to minimize the
energy of the system while at the same time its compression
ratio will be high.

There are noticeable similarities between the compression
principle of image and video codecs and the way the mam-
malian visual system captures, transforms and compresses the
luminence of light at the inner part of the eye, the retina. The
output of the retina is a very compact and informative code of
spikes (electrical impulse) which is produced when the activity

level reaches a threshold [3]. This code is sent to the visual cor-
tex. The very active regions of the input scene will send a lot
of spikes to the brain. Each spike is a spatiotemporal correlated
event.

The goal of this paper is to study the retinal compression
principle from the signal processing point of view. Our contri-
butions are the construction of the non-Separable sPAtioteM-
poral (non-SPAM) transformation, which is an improvement
of previous models like [4, 5] and the use of the Non Leaky-
Integrate and Fire (NLIF) sampler [6]. We apply this novel
compression architecture to a 1D-signal and we prove that we
are able to reconstruct based on the code of spikes.

In section 2 we introduce our bio-inspired filter, both in conti-
nuous and discrete time and space, which is applied on an 1D
signal. The NLIF sampling which produces the spike trains is
studied in section 3. The reconstruction of the input image is in-
troduced in section 4 and the numerical reconstruction results
are discussed in section 5. In the last section, we conclude the
paper with a discussion about the future work.

2 Bio-inspired Transformation

The aim of this section is to introduce a wavelet-like retinal-
inspired decomposition of 1D-signal. For this reason, we have
studied a non-Separable sPAtioteMporal (non-SPAM) filter which
has been modeled in [7] and mimics the mechanism of photo-



receptors and horizontal cells which lie inside the retina. The
non-separability of space and time means that the spatial be-
havior of the filter varies with respect to time. As a result, for
a given input signal which varies with respect to time, when
the non-SPAM filter is applied, it is possible to succeed in ex-
tracting it the beginning basic information of the signal and
while time increases these data are enriched with more details.
The non-SPAM filter K (x,t), where z € R and ¢ € R™, has

FIGURE | — The non-SPAM filter K (z,t).

been introduced in [7] and studied in [8]. This filter is a com-
bination of Gaussian spatial filters and exponential temporal
filters which ends up to a structure of a time depending Dif-
ference of Gaussian (DoG) function (Figure 1). This function
K (z,t) is convolved with a 1D-spatial signal which exists for
a long time (Figure 2), hence f(x,t) = f(x)1jo,a7)(t) where
f(zx) is the 1D-signal and 1 is the indicator function such that
Tjo,00)(t) = 1,if 0 < ¢ < o0, otherwise 0 :

Az, t) = K(z,0) % f(z,1) )

z,t . . . .
where * is the convolution with respect to space and time. The
function A(z,t) is called activation degree and consists of the
transformed coefficients (Figure 2). In our previous work [8]
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FIGURE 2 — Top : 1D spatial signal f(x). Middle : 1D spatial
filter f(x)1jo,a7)(t) flashed for a given time AT. Bottom :
Spatiotemporally filtered signal A(zy, t;).

we have also proven that the spatiotemporal convolution (1)
turns into a spatial convolution :
t

Az, t) = ¢z, t) % f(a), )

d(2,t) = WeR:(t)Gop () — ws Ry (1) G g (), 3)

where R.(t) and R,(t) are temporal filters and G, and G,
are Gaussian spatial filters. We have mathematically proven
in [9] that the temporal filters are polynomial functions atte-
nuated by exponential ones. For numerical purpose, we need
to discretize the non-SPAM filter. Let z1,...,2, € R? and
t1,...,tm € RT be some sets of spatial and temporal sam-
pling points. As a consequence, the continuous spatial convo-
lution (1) is approximated by the discrete spatial convolution :

Alxg, t;) = ¢z, t)) ® f(or)
= > blar — i t) f(wi), “)
=1

for all k and j, where f = (f(z1),..., f(z,)) and ¢(z, t;)
are the discretized signal and non-SPAM filter respectively.

3 Event-based Quantization

The bio-inspired code is generated in this section based on
the NLIF model which is inspired by the ganglion cells [3, 10,
11]. The NLIF model, which is applied to every component of
the input signal x;, comes up to the following outputs : the
sparse code of spikes and the quantized intensity of the spatio-
temporal coefficients.

The discretized activation degree A(xy, t;) is fed to the NLIF
sampler. The NLIF integrates the spatiotemporally transformed
coefficients. When the integration value reaches a given thre-
shold @ it emits a spike (Figure 4). Let 65 ; : 1 <1 < ny, the set
of time instances when the component x;, spikes :

Ok, 141

Z Az, t) >0, for t € {ty,...

t=0r1

stm}bs (&)

The raster plot according to the NLIF sampler is given by (6)
and is illustrated in Figure 3 :

1, if t; € {0p1,.-
Rk,j:{o i € 1k

otherwise.

As expected, for small time the firing rate is high since the
non-SPAM filter has a low-pass structure. However, while time
increases the non-SPAM filter turns into a high-pass. As a re-
sult, there are finer data which are going to be coded. After each
firing, the integration value is reset to zero and the process goes
on until the next spike is emitted.

The NLIF model is considered as a deterministic quantizer
which gets as an input a signal and always transforms it into
the same sparse code of events for a given threshold. The time
when each event happens is related to the integration value.
Hence, a spike which is emitted very soon means that the inte-
gration value reached the threshold 6 very fast and as a result,
there were only a few spatiotemporal coefficients A(xy,t;)
counted. We propose that the NLIF model is able to quantize
the input signal with respect to the emitted spikes and turn the
input signal into a piecewise constant function according to the
following assumption :
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FIGURE 3 — NLIF-based quantization of the input signal.

Assumption 3.1. It is assumed thatV't; € [0x 1, 0k 141], Yk, VI,
there is 0 which is chosen such that :

Axg, t)) — Az, ti—1)

Axp,tj) ~ Apj = Agj1 + 5 ;

where Ay, ; is a constant, A(xy, ;) is the intensity of the spa-
tiotemporal frame coefficient . at i, when the Ith spike is
emitted and Ay, o = 0.

Assumption 3.1 means that, between two sequential spikes
Ok,1, Ok, 1+1, we define the value of the piecewise constant func-
tion as the sum of the arithmetic mean of the activation degree
A(zy, t;) at time ¢, ¢, and the previous constant value of the
piecewise function. The above assumption is illustrated in Fi-
gure 4 and its goal is to represent the loss of information due
to the NLIF. In addition, this assumption enables to evaluate
the quality of the reconstructed signal, which is a piecewise
constant approximation of the original 1D-signal.
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FIGURE 4 — The spatiotemporal evolution A(xzy,t;) is plotted
together with its piecewise constant approximation Ay, ; and its
raster plot.

4 Reconstruction

The reconstruction architecture consists of two steps : first
of all it is necessary to decode the signal based on the raster
plot and secondly, the non-SPAM filter should be inverted to
reconstruct the input signal by its quantized activation degree.

4.1 NLIF-based De-quantization (De-NLIF)

The amplitude of the quantized activation degree can be es-
timated by the spike code if we know the threshold, the delay
Ok, 1+1 — 0k, which is required for each spike to be emitted [12].
Hence, the input signal is quantized before it is fed to the NLIF
according to the following equation :

(Ok1+1 — Ok1) * Agj = 0. 7)
Hence an estimation of Ay, ; is given by :
P 0
Apj~ (8)

(Okj+1 — Ok )

Figure 5 illustrates the estimation of the quantized spatio-
temporal coefficients of one component of the input signal ac-
cording to the reconstruction which has been just introduced in

(8).
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FIGURE 5 — NLIF-based de-quantization.

4.2 Inverting the non-SPAM

Once the activation degree of each component zy, is esti-
mated from the spike trains, the reconstruction of the input si-
gnal requires to inverse the non-SPAM filter. Due to the big re-
dundancy of the transformed coefficients, we exploit the frame
theory in order to prove that the filter is invertible [13, 14]. We
have proven in [9] that the non-SPAM filter is a frame and such
that we are able to reconstruct. In practice, the reconstruction
is processed as follows : Let us define A = [A4,,,..., A, ] as
a vector of size nm and ® = [¢1,...,d,,] a matrix of size
nm X n, where :

Al,j ©1,5
and ¢; = : ) ©))

Ak,j 5077.,j

where ¢ ; = (gb(zk —T1,t5), ..., 0T — asn,tj)). At time
tm, We propose to compute ftm which is the estimation of f
given by : ~ _ ~

fon = (@7®) 0T A, (10)
where M~! denotes the inverse of a matrix M and M " de-
notes its transpose. The dual frame, which is necessary to have

a perfect decoding at time t,,, is (®'®)~"1®T. We can invert
® T ® because the non-SPAM filter is a frame.



5 Numerical Results

The numerical results are given in Figure 6. We define the
Mean Square Error as MSE(f, f,. ) = ||f — f.. ||* which
measures the distortion between the original signal f and the
reconstructed signal ft For these experiments we used a 1D-
signal (1x64) on which we applied a non-SPAM filter of m=150
subbands. As it is expected there is a loss of information due to
the quantization of the activation degree before the NLIF sam-
pler and the NLIF-based de-quantization which increases the
distortion.

We need to highlight first of all that the reconstruction of the
spatiotemporal coefficients without the use of the NLIF mo-
del is optimal according to the frame proof which is confirmed
by the numerical results. In addition, the value of threshold
0 is related to the maximum value of the non-SPAM frame
(max(A(zk,tj)) = 3658). According to Figure 6, while the
threshold increases the quality of the reconstruction results is
getting closer to the original signal.
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FIGURE 6 — Frame-based reconstruction of the input signal.

6 Conclusion

In this paper we have introduced a complete bio-inspired co-
dec of 1D-signals. The non-SPAM filter and the NLIF sampler
are the basic components of this system which produces a code
of spikes. Based on this code we reconstruct an lossy approxi-
mation of the input signal.

In the future, we aim to study more complicated bio-inspired
quantizers like the Leaky Integrate and Fire (LIF) model or
noisy-LIF which model better the biological functions and is
expected to give us more robust and reliable results.
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