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Résumé – Le mosaı̈quage d’images constitue une solution d’intérêt pour construire automatiquement des panoramas (champs de vue étendus)
de surfaces cutanées, particulièrement bien adaptée au diagnostic en télédermatoscopie. Cette étude exploratoire de faisabilité compare les
performances de trois méthodes de flot optique (une méthode locale, une méthode globale basée sur les coupes de graphes et une méthode
basée sur une approche variationnelle totale) appliquées au mosaı̈quage d’images de la peau. Des résultats quantitatifs et qualitatifs sont donnés,
respectivement pour des fantômes avec une vérité terrain connue et pour des données patients.

Abstract – Skin image mosaicing is an important task, but only few work has been published in this domain. Large field of view mosaics of
cutaneous surfaces facilitate diagnosis and is unavoidable in the context of tele-medicine. This explatory (and feasibility) study compares the
performances of three optical flow methods (a local method, a global graph-cut method and a total variational approach) in the frame of skin
image mosaicing. Both quantitative and qualitative results are given, respectively on phantom data with known ground truth and on patient data.

1 Introduction

Skin lesion diagnosis and follow-up are based on visual ins-
pection by dermatologists. The latter are mainly located in ur-
ban areas. Therefore, telemedical approaches are developed to
solve the economical and health problems of people with re-
duced mobility and/or living in remote areas. The interest and
feasibility of tele-dermoscopy has been highlighted in recent
studies [1]. Dermatologists need high resolution and quality
images to perform reliable diagnosis. To facilitate scene in-
terpretation and lesion follow-up, extended FOV images with
high resolution can be obtained by superimposing the common
parts of the limited FOV images using mosaicing algorithms.
In practice, two strategies can be employed : 1) either the large
FOVs are computed at the patient’s home and the mosaic is
tele-transmitted, or 2) the complete video-sequence is trans-
mitted and the mosaic is build in the dermatologist’s office. In
both approaches, homologous image regions with few texture
information have to be robustly superimposed.

Mosaics are built by registering consecutive image pairs of
video-sequences. Only few work relating to skin image mosai-
cing have been published. Loewke et al. [2] used a local opti-
cal flow approach with a final error minimization with cross-
correlation. This two step approach was used to mosaic skin
images acquired under confocal microscopy where mainly 2D
translations were dominant. The major drawback of this ap-
proach is that it is suitable to estimate only small 2D transla-
tions and in-plane rotations. Holmberg et al. [3] have shown the
feasibility of skin image mosaicing based on textures at macro-
scale. However, only simple transformations (2D translations,
in-plane rotation and scale factor) are determined with their ap-

proach. In practice, more complete transformation (including
viewpoint changes) have to be computed since hand-held ca-
mera displacements cannot be controlled.

This exploratory work compares the performance of three re-
gistration methods for building large FOV mosaics of skin sur-
faces. Challenging features of skin images lie in its variability
(colour, hue, reflectence) and poor texture. This contribution
analyses the feasibility of skin image registration with different
optical flow (OF) algorithms. Section 2 first justifies the choice
of the transformation linking geometrically two images, and
then presents three OF methods (sections 2.1, 2.2 and 2.3) used
to determine the parameters of this transformation. Sections 3
quantitatively compares the performance of the methods on hu-
man skin images and video sequences.

2 Algorithms for Image Registration
The aim of the registration algorithm is to superimpose the
common parts of the consecutive image pairs (Ii, Ii + 1) of
a sequence. Ii and Ii+1 are target and source images respecti-
vely. The aim of the registration algorithm is to find the parame-
ters of transformation Ti,i+1 superimposing homologous pixels
pi+1 and pi with coordinates (xi+1, yi+1)T and (xi, yi)

T in
Ii+1 and Ii respectively. Considering that the skin surfaces
imaged are quasi-planar, a homography can be used to clo-
sely approximate the real transformation linking geometrically
two consecutive images [4]. In Eq. (1), the parameters, f , φ,
(sx, sy), (tx, ty) and {h1, h2} denote the scale factor, in-plane
rotation, shearing parameters, 2D translation and perspective
changes respectively. The value of parameter α is entirely defi-
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Also, let u = (u, v) be the optical flow vector estimated at a
point x = (x, y) for an image pair and u0 is the initial value of
the flow vector field. All of these notations will be used in the
latter sections.

2.1 Inverse compositional method
The inverse compositional algorithm described in [5] was used
to minimize following sum of squared differences (SSD) based
on brightness constancy between images Ii and Ii+1 :

SSD =
∑

x∈Ii∩Ii+1

[Ii (Wi,i+1(x; ∆M))− Ii+1 (Wi,i+1(x; M))]2 , (2)

whereW(x; M) is a warping function which transforms coor-
dinates x using the components of vector M which correspond
to the parameters of the transformation matrix Ti,i+1. Eq. (2)
is minimized with respect to ∆M by iteratively updating the
components of M after each warp of the source image to the
target image :

Wi,i+1 (x; M)←Wi,i+1 (x; M) ◦Wi,i+1 (x; ∆M)−1 , (3)

with ‘◦’ representing the product. The solution of Eq. (2) is
found by using a first order Taylor series approximation and
least-square estimate for ∆M. The initial transformation is ta-
ken to be an identity matrix (Wi,i+1(x; 0)). Since target Ii is a
fixed image, its spatial derivative can be calculated once for all
before the iteration process.

Yahir et al. [6] have successfully adapted this algorithm for
bladder image mosaicing. However, they have done an initial
warping using Wi,i+1(x; ∆M), with vectors ∆M correspon-
ding to translations (tx and ty in Eq. (1)) with initial values
computed from the cross-correlation between the preprocessed
[7] image pair (Ii, Ii+1). This reduced the number of iterations
for the algorithm convergence.

2.2 RFLOW variational energy minimization
Local methods (section 2.1) are computationally less expen-

sive but may not be robust enough to register sequences with
large homogeneous regions. Global methods propagate the OF
field from image regions with rich textures to image regions
with poor textures. It guarantees a dense flow field since the
whole image data is used. The model was first proposed by
Horn and Schunck [8] such as :

min
u

∫
Ω
‖ ∇Ii+1.∆u + Ii+1(x + u0)− Ii(x) ‖2︸ ︷︷ ︸

data−term

dΩ +

∫
Ω
‖ ∇u ‖2︸ ︷︷ ︸

regularizer

dΩ (4)

The data-term of Eq. (4) is the first order Taylor series expan-
sion of the SSD represented in Eq. (2) with Ti,i+1 as identity

matrix. This data-term assumes that the intensity of the homo-
logous pixels in the two images remains constant over a small
time interval. However, this impose a strong constraint in large
displacement cases and in cases with view-point changes of the
camera. Moreover, l2-norm in the regularizer oversmooths the
gradient, thus leading to inaccurate flow fields along the texture
boundaries. To address that issue, Ali et al. [9, 10] proposed (i)
a complementary structure constancy assumption and illumina-
tion compensating function in the data-term and (ii) an l1-norm
based energy minimization instead of l2-norm. This energy,
E in Eq. (5), was minimized using primal-dual approach in
convex optimization and is detailed in [10].

E = min
u,L

∫
Ω
{(1− φ) | ∇Ii+1.∆u + Ii+1(x + u0)− Ii(x) |1 +

φ | ∇Si+1.∆u + Si+1(x + u0)− Si(x) |1 + | γL |1}dΩ+∫
Ω
{| ∇u |1 + | ∇L |1}dΩ

(5)

Si and Si+1, representing the structural information, were com-
puted using the Eigenvalue information as detailed in [9, 10]
and illumination difference function L was ponderated by the
factor γ estimated from singular values as contrast information
of the images. The weighting factor φ was empirically cho-
sen to be 0.25. The robustness were justified for both intra and
inter-patient cases which is a strong motivation of our choice
for skin video mosaicing.

2.3 Graph-cut based method
Robust and accurate bladder image registration was achie-

ved with a graph-cut method in [11, 12]. The data-term used
both color and key-point information. Classical gradient based
smoothness term was also used for consecutive image pairs.
The energy to minimize is thus represented as :

E(u) = Ecolor(u) + βEkeypoints(u) + λsEsmooth(u) (6)

Weibel et al. [11] use RGB triplets at each node of a 10 ×
10 pixel grid to approximate the homography Ti,i+1 relating
images Ii and Ii+1. Let p, q and r be the nodes forming a tri-
angular image region ∆pqr with | ∆pqr | pixels and centered on
x, then :

Ecolor(x) =
1

| ∆pqr |
∑

x∈∆pqr

‖Ii(x)− Ii,i+1(Ti,i+1[(x + u) 1]T )‖2. (7)

Esmooth =
∑

x∈p,q

1

‖ p− q ‖2
‖ up − uq ‖22 (8)

The key-points are extracted using SURF [13] for an initiali-
zation to the minimization of energy E in Eq. (6). The vector
field is regularized using the normalized squared l2-norm of the
flow field gradient between two nodes of triplet ∆pqr as formu-
lated in Eq. (8). This allows for obtaining piece-wise smooth
flow field for approximating homography Ti,i+1.

3 Results and discussion
3.1 Dataset
A high resolution image of the vertebral dorsal (type IV skin
according to Fitzpatrick scale [14]) was taken as test “refe-



Method
TRE

(in pixel) FLE
(in pixel)

t
(in s)min max mean

Inv. Comp. with FCC [6] 1.45 5.64 3.57 19.30 0.1
RFlow method [9] 0.20 2.23 0.67 5.02 3
Graph-cut method [11] 0.18 2.30 0.778 7.50 15

TABLE 1 – Method comparison on the image sequence with 20 image pairs simulating
small displacements (protocol I). Panorama size of 839 × 433 pixels was obtained by
registering images with a size of 400 × 400 pixels. t represents the average registration
time for CPU implementation of the methods.

rence”. Two sets of image sequences, under different proto-
cols, were extracted with known ground truth homographies
T true
i,i+1 (see the quadrangles in Fig. 1 representing the first two

sub-images, with known homography between them, extrac-
ted from a high resolution image). 20 image pairs extracted
with protocol-I have small translations (upto 20 pixels) and
in-plane rotation (±5◦) between them. Protocol-II, introducing
large translations of upto 50 pixels, strong in-plane rotation of
±15◦ and perspective changes of ±10−5, was used to extract
another 48 image pairs. Fudicial points placed on the parent
image were used to evaluate registration errors.

3.2 Results
Two criteria were used for comparing the methods under study :
1) the target registration error (TRE) defined as :

TRE =
1

N

∑
p∈Ii∩Ii+1

‖ T true
i,i+1p− Ti,i+1p ‖2, (9)

whereN is the total number of pixels p in the overlapped image
region and 2) the fudicial landmark error (FLE) computed as
the Euclidean distance between the centroids of the true land-
mark position and that in the mosaic. The landmark closest to
the last frame of the sequence is selected for this purpose. Thus,
the TRE and FLE represent “local” and “global” registration er-
rors repectively.

The inverse compositional approach [6] resulted in a large
mean TRE of nearly 4 pixels and mosaicing error of approxi-
mately 20 pixels (refer Table 1). This led to a perceptible misa-
lignment as shown in Fig. 1. Both the graph-cut and the RFLOW
methods proved to be robust and accurate, giving FLE of only

FIGURE 1 – Protocol I mosaic with inverse compositional al-
gorithm using FCC in [6]. Large errors of 20 pixels are seen at
the fudicial landmarks marked in the mosaic.

Method
TRE

(in pixel) FLE
(in pixel)

t
(in s)min max mean

RFlow method [9] 0.15 2.23 0.70 30 4
Graph-cut method [11] 0.18 4.72 0.84 36 20

TABLE 2 – Comparison between the two most robust methods on 48 image pairs
(protocol II). The mosaic was within a 691× 911 pixels frame.

FIGURE 2 – Protocol II mosaic with the RFLOW method [9,
10] on a closed loop. The red mark represents the fudicial errors
(FLE) between the start and end fudicial mark represented as
large black spot.

7.50 and 5.02 pixels respectively. Mean TRE below 1 pixel was
noted for both of these methods. However, the mean registra-
tion time t of the RFLOW method is five times smaller than
that of the graph-cut method.

A more rigorous test was done with the images acquired
under Protocol-II. The inverse compositional method was not
robust enough to register all the image pairs (only the first 12
image pairs were registered with small TRE). Thus, the re-
sult with a complete sequence are only given for the graph-
cut and the RFLOW methods in Table 2. The RFLOW method
exhibited better local alignment accuracy (low TRE) than the
graph-cut method and gave an aggregated global mosaicing er-
ror (FLE) of nearly 30 pixels. The misalignments in the mosaic
were not visible at the small fudicial landmarks for both me-
thods. However, a perceptible displacement of the large fudi-
cial landmark between the end and the beginning of the mosaic
(closing loop) can be seen as a short solid line in Fig. 2. In
case of the graph-cut method, the TRE in the upper left region
in Fig. 2 is relatively higher as a result of large texture variabi-
lity and global intensity differences between image pairs in this
region. This resulted in maximum TRE upto 5 pixels for graph-
cut method while RFLOW gave more accurate result leading to
only 2.2 pixels maximum error. A remarkable gain in average
registration time is achieved with the RFLOW method in com-
parison to the graph-cut method under CPU implementation.



FIGURE 3 – Patient data mosaic of face and neck region. The
green line represents the trajectory of the camera.

Fig. 3 gives another representative result in terms of skin mo-
saics obtained from a video-sequence acquired on the left facial
part with some neck region on a patient. While no ground truth
homographies are available, it allows for a qualitative evalua-
tion of the RFLOW algorithm. As seen in Fig. 3, the RFLOW
method is robust enough to lead to visually coherent mosaics
even if the geometrical information visualized in the images is
not quasi-planar as in the region including the border between
the cheek and neck.

4 Conclusion and perspectives
This exploratory contribution presents a comparative study

of three state-of-the-art methods initially developed for blad-
der mosaicing and adapted to the registration of cutaneous sur-
faces. The initial results of the feasibility tests of such mosai-
cing are promising. This analysis will help us develop dedi-
cated algorithms for skin image mosaicing. The principle ob-
servation of this study is that the computation of OF with a
total variational l1 approach provides the best compromise bet-
ween registration robustness, accuracy and time. Graph-cut ba-
sed methods, on the other hand, are robust and accurate but too
slow. In contrast, local OF methods are fast but suffer from lack
of robustness for registration of skin images with high texture
variability.
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of project InnovaTICs-Dépendance. PhD grant of S. Ali is co-
funded by the Agence Nationale de la Recherche (National Re-
search Agency) and the Conseil Régional de Lorraine (Regio-
nal Council of Lorraine) in the framework of project CyPaM2
ANR-11-TECS-001

References
[1] C. Massone, A.G.G. Brunasso, T.M. Campbell, and H.P.

Soyer, “Mobile teledermoscopy–melanoma diagnosis by
one click ?,” Semi. in Cutananeous Medicine and Surgery,
vol. 28, no. 3, pp. 203–5, 2009.

[2] K. Loewke, D. Camarillo, W. Piyawattanametha, D. Bree-
den, and K. Salisbury, “Real-time image mosaicing with
a hand-held dual-axes confocal microscope,” in Proc.
SPIE, 2008, vol. 6851.

[3] B. Holmberg and H. Lanshammar, “Possibilities of tex-
ture based motion analysis,” Comp. Methods and Pro-
grams in Biomed., vol. 84, no. 1, pp. 1 – 10, 2006.

[4] S. Ali, C. Daul, T. Weibel, and W. Blondel, “Fast mosai-
cing of cystoscopic images from dense correspondence :
combined SURF and TV-L1 optical flow method,” in
IEEE Int. Conf. on Im. Proc., (ICIP), 2013, pp. 1291–95.

[5] S. Baker, R. Gross, T. Ishikawa, and I. Matthews, “Lucas-
kanade 20 years on : A unifying framework : Part 2,” Int.
Journal of Comp. Vis. (IJCV), vol. 56, pp. 221–255, 2003.

[6] Y. Hernandez-Mier, W. Blondel, C. Daul, D. Wolf, and
F. Guillemin, “Fast construction of panoramic images for
cystoscopic exploration,” Comp. Med. Imag. and Graph.,
vol. 34, no. 7, pp. 579–592, 2010.

[7] R. Miranda-Luna, Y. Hernandez-Mier, C. Daul, W. Blon-
del, and D. Wolf, “Mosaicing of medical video-
endoscopic images : data quality improvement and algo-
rithm testing,” in Elec. and Elect. Eng., 2004. (ICEEE).
1st Int. Conf. on, 2004, pp. 530–535.

[8] B. K. P. Horn and B. G. Schunck, “Determining optical
flow,” Artificial Intelligence, vol. 17, pp. 185–203, 1981.

[9] S. Ali, C. Daul, and W. Blondel, “Robust and accurate
optical flow estimation for weak texture and varying illu-
mination conditions : Application to cystoscopy,” in Int.
Conf. on Im. Proc. Theory, Tools and Appli. (IPTA), 2014.

[10] S. Ali, C. Daul, E. Galbrun, M. Amouroux W. Blondel,
and F. Guillemin, “Robust bladder image registration by
redefining data-term in total variational approach,” in Me-
dical Imaging : Image Proc., SPIE, 2015.

[11] T. Weibel, C. Daul, D. Wolf, R. Rösch, and F. Guillemin,
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