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Résumé – L’approche huberienne est appliquée à des signaux de marche relatifs aux désordres neurodégénératifs. À partir
d’une modélisation auto regressive moving average à faible ordre, basée sur l’estimation huberienne, l’effet mémoire de la marche
humaine est montré. L’approche mathématique est discutée et des résultats expérimentaux basés sur une base de données
contenant 16 sujets sains, 15 Parkinson et 19 Huntington sont présentés.

Abstract – Huberian approach is applied to neurodegenerative disorder gait signals. From low order auto regressive moving
average modeling based on Huberian estimation, memory effect of human walking disorder is shown. Mathematical approach is
discussed and experimental results based on a database containing 16 Control subjects (CO), 15 Parkinson’s disease (PD), and
19 Huntington’s disease (HD) are presented.

1 Introduction

This paper introduces a new use of Huberian estimation
function [7] applied to neurodegenerative disorder signals
from walking human. Low order Auto Regressive Mov-
ing Average (ARMA) modeling of human gait disorder
and new indicators to differentiate two neurodegenerative
diseases are proposed and discussed. Neurodegenerative
disorders have a direct consequence on the human behav-
ior by introducing natural outliers (NO) in biomechanic
time-signals. These points are crucial in the study of neu-
rodegenerative diseases and provide information of the de-
gree of disorder. Here, PD and HD diseases are stud-
ied through the stride time-signal (STS) of human gait
rhythm, corresponding to the time from initial contact of
when one foot to the subsequent contact of the same foot.
Human locomotion is regulated by the central nervous sys-
tem (CNS). PD is a chronic and progressive hypokinetic
disorder of the CNS induced by basal ganglia dysfunction.
HD is a progressive neurodegenerative disorder with au-
tosomal dominant inheritance. Different approaches exist
to analyze gait rhythm time-signals, such as Gaussian ap-
proach [11], Huberian framework [6], and cyclostationary
analysis [9]. Wu and Krishnan [11] developed a frame-
work through Gaussian statistical analysis applied to PD,
amyotrophic lateral sclerosis, and gait maturation in chil-
dren. The main drawback of studies based on the Gaus-
sian framework is the not well treatment of the NO in the
time-signal. Indeed, during the 5-min walking period, ev-
ery time the subjects reached the end of the hallway, they

had to turn around, and finally they continued walking. In
these studies based on Gaussian approach, NO are deleted
to ensure consistency and convergence of the estimator.
Here, all points are treated. ARMA system identification
is a well-defined problem in several science and engineer-
ing areas such as speech signal processing, adaptive filter-
ing, radar Doppler processing or biomechanics. Based on
the fractional signal processing approach, Chaudhary et
al [4] proposes a fractional least mean square (LMS) algo-
rithm for parameter estimation of Hammerstein nonlinear
ARMA system with exogenous noise. This algorithm has
still been used in other studies [2]. Another approach uses
a two-stage fractional LMS identification algorithm for pa-
rameter estimation of controlled ARMA (CARMA) sys-
tems [10]. Among the problems of ARMA identification,
the model order estimation is crucial. Most of the time,
these estimation procedures are performed by the implicit
assumption that the processes are Gaussian. Moreover,
these methods are based on the assumption that the sig-
nal does not contain outliers or a low density of outliers
less than 1%. Here, low order ARMA modeling approach
based on Huberian function with low threshold γ to as-
sess parameters and experimental results are performed
with real measurements with NO. Memory effect of hu-
man walking disorder is shown. This paper is organized
as follows: Section 2 gives the Huberian mathematical
context. Experimental results based on a database con-
taining 16 CO, 15 PD, and 19 HD are shown in Section 3.
Conclusions and perspectives are drawn in Section 4.



2 Mathematical framework

2.1 Estimation criterion based on Hube-

rian function

Let (S,S, P ) be a probability space and {Xk}
N
k=1 a se-

quence of i.i.d. random variables with values in S. Let Θ
be a Borel subset in R

d and Γ a compact subset of R. Let
ρHγ : S × Θ × Γ → R be a symmetric function such that

ρHγ (• (θ, γ)) is measurable for each θ ∈ Θ and γ ∈ Γ. The

estimator θ̂HN is defined by a minimum of the form

N−1
N
∑

k=1

ρHγ

(

Xk(θ̂
H
N , γ̂)

)

= inf
θ∈Θ,γ∈Γ

N−1
N
∑

k=1

ρHγ (Xk(θ, γ))

(1)

with ρHγ (X) =
{

X2

2 for |X | ≤ γ, γ |X | − γ2

2 for |X | > γ
}

.

γ is a threshold to be determined to improve efficiency,
convergence, and stability of θ̂HN . Let us introduce two in-
dex sets in θ ∈ R

d defined by ν2(θ, γ) = {k : |εk(θ, γ)| ≤ γ}
and ν1(θ, γ) = {k : |εk(θ, γ)| > γ} such that card [ν2(θ, γ)]+
card [ν1(θ, γ)] = N ∀θ ∈ DM , γ ∈ Dγ , where εk(θ, γ) is
the prediction error, DM and Dγ are compact subsets and
M a model structure. LetM (θ) be a particular model cor-
responding to the parameter vector value θ. Let us define
θ̃ = [θ γ]. We denote sk (θ, γ) , k = 1, ..., N the sign func-
tion such that sk (θ, γ) = 1 for εk (θ, γ) > γ, sk (θ, γ) = −1
for εk (θ, γ) < −γ and sk (θ, γ) = 0 for |εk (θ, γ)| < γ. Let
εk (θ, γ) = yk − ŷk|k−1 (θ, γ) = yk − ϕT

k (θ, γ) θ be the pre-
diction error where yk is the process output, ŷk|k−1 (θ, γ)

the prediction model and ϕk (θ, γ) ∈ R
d the regressor vec-

tor. This criterion contains a L2 part to treat small pre-
diction errors and a L1 part to deal with NO. Consider a
batch of data from the system Z̃N = [y1...yN ]. Roughly
speaking, we have to determine a mapping from the data

Z̃N to the setDM×Dγ , Z̃
N −→

ˆ̃
θHN =

[

θ̂HN γ̂
]

∈ DM×Dγ.

The estimation criterion to be minimized is then given by

WN (θ, γ) =
1

N

∑

k∈ν2(θ,γ)

ε2k(θ, γ)

2

+
γ

N

∑

k∈ν1(θ,γ)

(

|εk(θ, γ)| −
γs2k(θ, γ)

2

)

(2)

2.2 ARMA model in Huber’s framework

The process output data are denoted as δtk, k = 1...N cor-
responding to the STS of human gait rhythm from heel toe
force sensors underneath the left foot. Now assuming that
δtk is generated according to δtk = H0 (q) ek, whereH0 (q)
is the noise filter and ek, k = 1...N a random variables
sequence with zero mean and variances λ. The ARMA
model set is parametrized by a d-dimensional real-valued

parameter vector θ, i.e. δtk = H (q, θ) ek = C(q,θ)
A(q,θ)ek

with A (q, θ) = 1 +
nA
∑

i=1

aiq
−i, C (q, θ) = 1 +

nC
∑

i=1

ciq
−i and

θ = [a1...anA
c1...cnC

]
T
. Moreover, q−1 is the lag operator

such that q−lδtk = δtk−l, l ∈ N. We write εk (θ, γ) =

δtk − δ̂tk (θ, γ) as the prediction error where the predic-

tion model is δ̂tk (θ, γ) = ϕT
k (θ, γ) θ and the regressor is

ϕk (θ, γ) = [−δtk−1...− δtk−nA
εk−1 (θ, γ) ...εk−nC

(θ, γ)]T .

ψk (θ, γ) is the gradient with respect to θ of δ̂tk (θ, γ) given
by ψk (θ, γ) =

1
C(q,θ)ϕk (θ, γ) [8].

2.3 Choice of γ

A new curve ensuring a location of γ in low values leading
to a reduction of the bias is shown. This bias is given by

sup
FN∈PΦN

(ω)

∣

∣

∣
θ̂HN − θ∗

∣

∣

∣
= bωN (γ) ≤ κ̂Nfω (γ) |Lp| (3)

where Lp is the upper NO and fω (γ) a new function
named tuning function. Moreover κN is independent of
γ, θ∗ is the true parameter, PΦN

(ω) is the corrupted
distribution model and FN the contaminated Gaussian.
From this curve in Fig.1, classical interval Cγ = [1, 1.5] ap-
pears and a new interval Eγ = [0.001, 0.2] is defined. We
showed [6] that fω (γ) ≈ 0.034γ5 − 0.316γ4 + 1.113γ3 −
1.773γ2 + 1.088γ − 0.002. In absolute value, the slope
in Eγ is six times as important as that of the slope in
Cγ . Accordingly, the sensitivity to reduce the influence
of high NO in Eγ is six times as important. Therefore,
this new curve allows to locate a new investigation in-
terval of γ to decrease the effects of NO. Let us define
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Fig. 1: Tuning function with two main intervals. Classical
interval Cγ with γ ∈ [1, 1.5] and extended interval Eγ with
γ ∈ [0.001, 0.2].

Ψ̃ (θ, γ) = [Ψ (θ, γ) ∂γWN (θ, γ)]T , where Ψ̃ (θ, γ) ∈ R
d+1

and Ψ (θ, γ) = ∂θWN (θ, γ) named Ψ-function. We seek
an optimal value of γ such that WN (θ, γ) has a global
minimum with probability one (w.p.1) as N tends to in-
finity withW (θ, γ) = lim

N→∞
EWN (θ, γ). This involves that



the solution of Ψ̃
(

θ̂HN , γ̂
)

= 0 is unique meaning a global

minimum of θ̂HN such that γ̂ → γ∗ and θ̂HN → θ∗ w.p.1 as
N → ∞.

3 Experimental results

Experimental results are presented over 16 CO, 15 PD,
and 19 HD, left and right feet for different estimation
norms and a campaign of estimations is carried out in Cγ

with γ∗ = 1.5 and Eγ with 0.001 ≤ γ∗ ≤ 0.2. For each es-
timator, namely LSE, LSAD (Least Sum of Absolute Devi-
ation), L∞ and Huberian, comparisons between CO vs PD
and HD for left and right feet are given. Table. 1 shows

the means of γ∗, RMSE, FIT (%) (100
(

1− y−ŷ
y−<y>

)

where

y, ŷ and < y > are the process output, the prediction
model output and the mean of the process output, respec-
tively), L2C(%), L1C(%) and the total number of param-
eters n = nA + nC . L2C and L1C are the L2 and L1

contributions respectively given by LiC =
card[νi(θ̂H

N ,γ∗)]
N

.
These are indicators of the density of NO in the prediction
errors. We focus on the main results in Table. 1. L2, L1

and L∞ estimators give bad results with large RMSE, low
FIT and large number of parameters between 40 and 70.
In Cγ for γ∗ = 1.5, the number of parameters is reduced
with 25 ≤ n ≤ 32 but not sufficient for a reduced order
ARMA modeling. The Huberian approach in Eγ leads to
relevant results. In Corbier and Carmona [5] we showed
that dHM < dL1

M < dL2

M where dHM is the Huberian model
order. This result is still verified here for a signal model-
ing. Main results show that < γ∗control >≈ 2 < γ∗disease >,
meaning that there are twice more NO in STS-PD and
STS-HD than STS-CO. Indeed, for PD and HD, the esti-
mation requires a low value of γ∗ involving a large value of
the L1 contribution close to 70%. For CO, γ∗ ≈ 0.19 and
L1C ≈ 58%. Figure. 2 and 3 show two ARMA models for
left CO (γ∗ = 0.05) and left PD (γ∗ = 0.003) respectively
with a FIT close to 83%. In Figure. 3 NO clearly appear
in index-times k = 52, k = 113, k = 190 and k = 247. We
can notice the good behavior of the Huberian reduced or-
der ARMA model during this phase. Equation (4) shows
the reduced order ARMA model of left PD for γ∗ = 0.003.

δtk = 0, 712δtk−1+0, 022δtk−2+0, 018δtk−3+0, 181δtk−4

+0, 060δtk−5 + ek − 0, 236ek−1 − 0, 065ek−2 + 0.141ek−3

−0, 098ek−4 (4)

The limited number of ARMA parameters contradicts con-
clusions in [1]. These studies showed a stride intervals of
normal human walking which exhibit long-range temporal
correlations. They presented a highly simplified walking
model by reproducing the long-range correlations observed
in stride intervals without complex peripheral dynamics.
Based on fractal approach they showed an important point
of view related to the long-range memory effect of hu-
man walking [3]. Our new approach shows a short-range

memory effect for normal and disease human walking. It
remains to investigate this memory effect and try to inter-
pret in physiological terms the correlations with the CNS.

4 Conclusion

The main purpose of this paper has been to present a re-
duced order ARMA estimation method based on a robust
approach using Huberian function for the neurodegenera-
tive disorder signal modeling. A new approach has been
presented to choose the threshold in Huberian function, al-
lowing a best treatment of the natural outliers contained
in the signals. The reduced number of parameters is due
to a relevant choice of this threshold in a new interval
range. However, it remains to characterize more appre-
ciably the diseases to differentiate the neurodegenerative
disorders. future work will focus on mixed Lp estimator
[5] to reduce the number of parameters providing new in-
dicators and will investigate the memory effect of human
walking.
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Fig. 2: Left Huberian ARMA model (red line) vs CO real
signal (black line) at γ = 0.05.
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