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Résumé – L’estimation des matrices Origines-Destination connait un renouveau par l’apparition de nouvelles technologies donnant accès à un
échantillon de trajectoires. Ce travail se concentre sur le cas des réseaux où les décomptes de trafics sont mesurés par des boucles magnétiques et
un échantillon de trajectoires est disponible, comme par exemple la ville de Brisbane où des détecteurs Bluetooth ont été installés. Cette source
d’information additionnelle permet l’extension des méthodes tradionnelles d’estimation des matrices OD aux matrices OD par liens (LODM).
Nous utilisons pour cela un algorithme d’optimisation convexe dont nous testons la validité sur un réseau simulé.

Abstract – Origin-Destination matrices (ODM) estimation can benefits of the availability of sample trajectories which can be measured thanks
to recent technologies. This paper focus on the case of transport networks where traffic counts are measured by magnetic loops and sample
trajectories available. An example of such network is the city of Brisbane, where Bluetooth detectors are now operating. This additional
data source is used to extend the classical ODM estimation to a link-specific ODM (LODM) one using a convex optimisation resolution that
incorporates networks constraints as well. The proposed algorithm is assessed on a simulated network.

1 Introduction

Link-dependent Origin-Destination matrices (LODM) is an ex-
tension of the Origin-Destination Matrice (ODM) concept, which
is one of the mostly widespread tool used to represent demand
on networks such as for Internet traffics [1, 2, 3] or transport
networks [4]. LODM gives at the same time an insight of the
traffic assignment and of the traffic demand. An operating ex-
ample is provided by the Bluetooth scanners operated in Bris-
bane by the Brisbane City Council [5], whose study constitute
our long-term target. These data are composed with probe tra-
jectories (obtained from bluetooth cars) and with traffic count
data at each link. The challenge is to estimate the trajectories
for the whole traffic, not only the cars with bluetooth, i.e., to
estimate the LODM. Thus, the objective of the present work is
to propose a method for recovering the LODM, by combining
probe trajectories and the traffic count data.
Related Work. The generic challenge of estimating LODM
from traffic counts and probe trajectories, using convex pro-
gram, has been developed recently in [6] for Internet data and
in [7] for car traffic. While the work in [6] has many common
points with our problem (availability of link counts, sample of
OD flows) it assumes the knowledge of the Routing Matrix,
assigning traffic flows to the set of links.
Objectives. This paper improves the method proposed in [7],
studying how the estimation of LODM (and ODM as a by-
product) can be formulated as an inference problem on the
transport networks, and then be solved by convex optimiza-

tion techniques [8, 9]. Further development of the constraints
induced by the topology of the transport network and their im-
pact on the estimation process will be presented. After intro-
ducing notations, the direct problem is defined in Section 2 and
the estimation as an inverse problem is formulated in Section
3. In Section 4, the proposed LODM estimation performance
are explored using traffic simulations.
Notations: A, A and A respectively refer to vectors, matrices
and tensors. The Hadamard product (element-wise product) of
A andB is denotedA◦B. For LODM, the two first indices are
labelled i (origins) and j (destinations); the third index l stands
for the links in the network. The symbol • is used to denote the
dimension that does not contribute to a sum: e.g., the sum over
first and third dimensions is written

∑
i,•,lAijl

.

2 Estimating Link-Dependent ODM

2.1 Problem Presentation
The road network is represented as a graph G = (V,L). The
finite set of nodes V models the major intersections of the
road network; each node is also a possible origin or destina-
tion. L is the set of directed edges, each corresponding to
a direct itinerary (or road) linking two nodes (i.e., not going
through another node in V ). The structure of the graph is then
given by two matrices I and E called the incidence and exci-
dence matrices respectively. These matrices describe the re-
lations between the nodes and the edges: for every (v, l) ∈



{1, . . . , |V |} × {1, . . . , |L|},

I
vl

=

{
+1 if the edge l is arriving to the node v,
0 otherwise,

E
vl

=

{
+1 if the edge l is starting from the node v,
0 otherwise.

Note that in graph theory, it is the difference I − E that would
be named as “incidence matrix”.
The measurements assumed available on this graph are B

and q. The tensor B, of dimension |V |2 × |L| gathers informa-
tion from Bluetooth trajectories. Each trajectory adds a count
of 1 into the elements of B, denoted Bijl corresponding to the
origin (i), the destination (j) and the links (l) (i.e., edges in G).
The vector q of dimension |L|, is the traffic flow measured on
each edge l. These counts can be obtained by magnetic loops.
Such measurements are subject to count errors modelled here
by a noise ε.
The quantity to be recovered is the count of trajectories for all
cars over the OD and links, denoted by the tensorQ. To achieve
this estimation, a variational approach has been presented in
[7] that consisted in solving

α̂ ∈ Argmin
α

K∑
k=1

Gk(α) (1)

where the functions Gk : R|V |×|V |×|L| → ]−∞,+∞], for ev-
ery k ∈ {1, . . . ,K}, model several network properties and α
satisfies α ◦ B = Q. The present contribution proposes im-
provements to this approach. The first improvement is to ques-
tion the relevance of using the variable α for the optimisation
process; through minor changes, we can estimate the variable
Q directly:

Q̂ ∈ Argmin
Q

K∑
k=1

Fk(Q). (2)

where the functions Fk : R|V |×|V |×|L| → ]−∞,+∞], for ev-
ery k ∈ {1, . . . ,K}, model Q and several network properties.

This change is useful for two reasons: First, it enables the es-
timation of the elements ofQwhere the corresponding element
in B is zeros. This, accounts for the possibility of a trajectory
not being represented by a Bluetooth sample. Second, it gives
the possibility of assuming that the variables Q and B are re-

lated by a Poisson distribution of type B ∼ P
(
ηQ
)

where η
can be related to the Bluetooth penetration rate.

The second axis of improvement concerns the choice of the
regularization terms within the objective function for a better
modeling of the network properties. In the next section, we de-
scribe specifically the choices done for the functions (Fk)1≤k≤K .

2.2 Criterion to minimize
Bluetooth to total flows. The first objective is to relate the
known Bluetooth flows (B) with the total flows (Q). To do so

we assume a Poisson noise, typically involved in counting pro-
cesses. This Poisson noise is characterised by the scale param-
eter η that is linked to the proportion of Bluetooth vehicles on
each road of the network. To ensure consistency between the
estimated Q and a Poisson model, the function F1 models the
minus log-likelihood associated with the Poisson model, that is
also known as the Kullback-Leibler divergence [10],

F1(Q) =
∑
ijl

ψDKL (Bijl, ηlQijl) (3)

where, for every (u, v) ∈ R2, η > 0,

ψDKL(u, ηv) =


−u log v + ηv if v > 0 and u > 0,

ηv if v ≥ 0 and u = 0,

+∞ otherwise.

For this work, η = q/
∑
i,j,•B

Traffic Counts and total flows: The variable Q is linked to
the known traffic counts on links q by the relationship:

q =
∑
i,j,•

Q+ ε (4)

where ε represents the error on counts measured by magnetic
loops. Accordingly to (4), a usual choice for a function ensur-
ing the consistency of the solution on the edges is:

F2(Q) = ‖q −
∑
i,j,•

Q‖2.

Flow continuity at the nodes: An additional constraint comes
from the balance of the flows on each node. It can be written
using the classical ODM, denoted T :

T =
∑
•,•,l

I ◦Q =
∑
•,•,l

E ◦Q (5)

where I and E are respectively the |V |-replication of the pre-
vious incidence and excidence matrices, defined as follows:

(∀k ∈ V ) I
kjl

= I
jl

and E
ikl

= E
il

(6)

The balance requires that, at every node n, the flow having
for destination n, computed as Dn =

∑
i,• Ti,n, minus the

flow originating from n, computed as On =
∑
•,j Tn,j , should

equal the flow going through the node n. This is written as:

Dn −On =
∑
•,l

(I − E)n,l
∑
i,j,•

Q (7)

Using variable Q with eq. (5), it reads as∑
i,•,l

I ◦Q−
∑
•,j,l

E ◦Q = (I − E)
∑
i,j,•

Q (8)

The function resulting from this constraint is

F3(Q) = ‖
∑
i,•,l

I ◦Q−
∑
•,j,l

E ◦Q− (I − E)
∑
i,j,•

Q‖2.



Total Flow domain of definition: As the total flow is at least
greater or equal to the flow of Bluetooth enabled vehicles, it is
further imposed that Q belongs to the following convex con-
straint set:

C =
{
Q =

(
Qijl

)
(ijl)∈V×V×L ∈ R|V |×|V |×|L| | Qijl ≥ Bijl

}
In the criterion, this constraint appears through an indicator
function F4(Q) = ιC(Q), equals to 0 if Q ∈ C and +∞ oth-
erwise.

3 Algorithm
The criterion to obtain a relevant transport solution, using the
topology of the networks and the data available, then reads:

Q̂ ∈ Argmin
Q

F1(Q) + γF2(Q) + µF3(Q) + F4(Q) (9)

with γ, µ ≥ 0, the weight of each constraint.
The functions involved in criterion (9) are convex, lower

semi-continuous and proper. Moreover, γF2 + µF3 is dif-
ferentiable with a β-Lipschitz gradient where the value of β
depends on the norm of the matrices involved in each func-
tion. According to [11, Proposition 2.2.], the function F1 + F4

is non-differentiable but it has a closed form expression for
its proximity operator that is PC ◦ proxF1

where the closed
form expression of proxF1

is given in [10, Equation (41)] and
PC = max(·, B). To find Q̂, we employ the forward-backward
algorithm, adapted from [12], described as follow:

Algorithm 1 Forward-backward algorithm
Set τ = 1.99β−1

For n = 0, 1, . . . until convergence Q[n+ 1
2 ] = Q[n] − τ (γ∇F2 + µ∇F3)

(
Q[n]

)
Q[n+1] = max

{
proxτF1

(
Q[n+ 1

2 ]
)
, B
}

The initialization ofQ[0] is set to zero. According to [13], the

sequence (Q[n])n∈N converges to Q̂. In practice, we consider
the convergence is achieved when the relative error between

two iterates is such that
‖Q[n]−Q[n−1]‖2

‖Q[n]‖2 ≤ 10−6.

4 Simulation and Results

4.1 Simulation setting
A simulation is developed to produce ground truth data. First, a
schematic road network is built by locating a set of nodes ran-
domly on a grid. The nodes are first linked by a minimum span-
ning tree (computed by the Kruskal’s algorithm [14]). Then,
links are randomly added to connect the nodes with lower de-
gree (sum of in and out edges) provided that the added links
do not cross or repeat an existing one. This is stopped when
the average total degree becomes 6 per node, a value consis-
tent with that of real road networks (notably Brisbane transport

network). In practice for this simulation, the number of nodes
is |V | = 50. This choice is driven by the tractability of the
experiment and the possibility of testing varied setups easily.

Then trajectories are drawn with random origin and destina-
tion with uniform law, and use the shortest path connecting the
two. Their number is set proportional to the number of links
(and thus to the number of nodes).

For future comparison to Brisbane’s network, the number
of vehicles is set to 500 per links. Measures show that few
hundreds vehicles per link are detected on average by the scan-
ners per 15 minutes (a relevant duration in transport to estimate
ODM). With a penetration rate of Bluetooth devices estimated
at around 30%, 500 vehicles per link is a reasonable value.

The penetration rate is drawn for each OD pair from a Gaus-
sian distribution of mean 30% and standard deviation of 10%
(and truncated to be between 0 and 1). This choice accounts
for the variability of the ownership distribution of Bluetooth
devices (which is not known) from one node to another depend-
ing, as an example, on the wealth of the neighbourhoods of the
node. Finally, for each trajectory, it is drawn with a probability
equal to the penetration rate on its OD whether it is a sam-
ple Bluetooth trajectory, or not. This allows us to have data B
while the full set of trajectories gives Q for ground truth. The
measured traffic flow per link q is obtained from Q, assuming
the addition a noise ε, for which each independent component
is drawn from a Gaussian N (0, σ) distribution where σ is pro-
portional to q; we call r the ratio of proportionality.

For some pairs of OD, the flows of a typical simulation is
shown in 1(a), with a clear heterogeneity of the counts on links.

4.2 Results
Additionally to the optimal solution of (1) (see [7]) and (9),
two naive solutions Q̂0 and Q̂1 are computed as the Bluetooth
LODM multiplied by the averaged Bluetooth penetration rate
over the whole network or over each link respectively:

Q̂0 =

∑
l q∑

i,j,lB
·B

and

∀(i, j, l) ∈ R|V |×|V |×|L| (Q̂1)ijl =
ql∑
i,j Bijl

·Bijl

The solutions are compared in Table 1 by looking at the rel-
ative distance DQ between the simulated LODM Q and the
estimated one. This is computed as a `2 norm of the difference
divided by the norm of the actual LODM. Others metrics are
computed the same way: Dql and DT for, respectively, the rel-
ative distance between aggregated volumes on links and the OD
matrix T . For low noise r, the naive solution Q̂1 is performing
well compared to the other solutions for very a low amount of
computation. It performs especially good on the metrics Dql

as a consequence of its definition. To the opposite, the naive
solution Q̂0 which correspond to an averaged penetration rate
over the whole network, therefore less sensitive to the noise
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FIG. 1: Representation on the network for some OD: (a) of the number of trajectories per link for these OD; (b)-(c) of the relative errors on
recovered volumes per link for the same OD, for (b) estimate Q = Ql; (c) optimal solution of (1); (d) optimal solution of (9).

r, can give better estimates than Q̂1 when the noise increases.
The solution of (1) and (9) perform better than the naive solu-
tions, independently of the noise which would be unknown in
real traffic networks. Moreover, as shown on Figure 1(b), Q̂1

has poor continuity of the flow along the itineraries. In fact, it
doesn’t satisfy Kirchhoff’s law (F3). Finally, the solution of (9)
is performing better than the one of (1) both with the metrics
of Table 1 and has lower relative error per OD as shown by the
comparison of Figure 1(c) and (d).

r Algo. γ µ DQ Dql DT

0%

Q̂0 0.399 0.03 0.400
Q̂1 0.397 0 0.396

(1) 10 1* 0.397 0.01 0.395
(9) 100 1 0.360 0 0.358

5%

Q̂0 0.400 0.03 0.401
Q̂1 0.401 0.05 0.397

(1) 0.1 1* 0.399 0.03 0.400
(9) 0.1 2 0.354 0.04 0.352

10%

Q̂0 0.405 0.03 0.406
Q̂1 0.416 0.10 0.422

(1) 1 0.1* 0.405 0.03 0.406
(9) 0.1 2 0.364 0.07 0.364

TAB. 1: Values of the metrics DQ, Dql and DT for optimal
γ and µ. Q0 and Ql are the naive solutions. Note that µ for
algorithm (1) is to treat with caution as G3 in (1) was slightly
different. The metrics reported are the same for all the Q̂.

5 Conclusion
A new methodology for estimating LODM from traffic counts
and sample trajectories has been presented. Compared to pre-
vious method, the assumption of a Poisson law underlying the
Bluetooth distribution together with more extensive constraints
on network topology lead to better solutions. These results are
an encouragement for developing additional constraints, espe-
cially on Origin-Destinations. Results have shown that met-
rics on aggregated data per links have very good values while
improvements have to be done on the OD one. Trails of im-
provement might rely on testing other distribution relating Q
to B. Indeed, the combination of F1 and F4 corresponds to a
truncated Poisson distribution and may be replaced by a bino-

mial law. Otherwise, implementing a norm of smoothness of
the penetration rate along the graph as per [15] or assuming a
long term spatio-temporal correlation assumption.
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