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Résumé – L’IRM fonctionnel enregistrant l’activité cérébrale au cours du temps et l’IRM de diffusion permettant de reconstruire le réseau
cérébral sont l’objet d’une attention considérable de la part des neuroscientifiques. Dans cette étude, nous présentons une nouvelle méthode pour
la détection de schémas d’activité dans le cerveau en combinant ces 2 techniques IRM. Notre approche est basée sur une organisation originale
des données sous la forme d’un graphe spatio-temporel des régions cérébrales. Une connexion entre deux régions est créée si ces régions sont
reliées anatomiquement et si elles sont fonctionnellement actives entre deux pas de temps successifs. Nous introduisons la notion de composante
activée dynamique qui est un petit sous-graphe connecté du graphe spatio-temporel et qui encode la nature dynamique de l’activité du cerveau.
En regroupant les composantes d’activation ensemble, nous retrouvons les réseaux d’état de repos (resting state networks) mis en évidence dans
la littérature et nous présentons de nouvelles informations sur l’activité cérébrale qui pourraient être d’un grand intéré pour le diagnostic.

Abstract – Functional MRI (fMRI) giving a recording of brain activity over time at the scale of the second, and Diffusion MRI (dMRI) allowing
to retrieve the anatomical connectivity network of the brain, have attracted considerable attention from neuroscientists. In this study, we present a
novel method for detecting patterns of activity in the brain by combining fMRI and dMRI data. Our approach is based on an original layout of the
data into a spatio-temporal graph of interacting brain regions. Edges from one brain region to another are created if those regions are anatomically
linked and if they are functionally activated during successive timesteps. We introduce dynamic activation components that are small connected
subgraphs of the spatio-temporal graph which encode the dynamical activity of the brain. By clustering similar activation components together,
we recover the resting state networks found in the literature and we present new information on the brain activity that could be of high interest
for diagnosis purposes.

1 Introduction
Magnetic resonance imaging is one of the most popular tech-

niques to analyze the brain anatomy and function. By collec-
ting information on the brain’s activity over time via functio-
nal MRI recordings and its connectivity map through diffu-
sion MRI, these imaging data are expected to be extremely
useful for the characterization of pathologies such as Alzhei-
mer’s disease, multiple sclerosis, epilepsy and psychiatric di-
sorders [2, 7]. Recently, processing the brain’s low-frequency
activity during task-free experiments allowed to identify spa-
tial patterns of coherent brain activity : called resting state net-
works (RSNs) [12, 3]. These RSNs have mostly been extrac-
ted using spatial independent component analysis (ICA) on the
very noisy data obtained by resting state fMRI. While resting
state activity schemes are utterly complex and difficult to vi-
sualize, these first steps mark an important progress on the
understanding of the brain’s behavior. It is important to stress
that these methods probing resting state activity do not consi-
der non-stationary aspects of the functional time series. Spatial
ICA and correlation approaches output average spatio-temporal
patterns over the whole recording time, discarding a large amount

of information. Besides, they do not take into account the brain
structural connectivity network available trough diffusion MRI
which could bring additional and complementary information.
Indeed, patterns of strong anatomical connectivity between brain
areas have been associated to high functional coherence [5, 6].

Stepping from recent literature, it is more and more evident
that dynamical aspects of functional activity during rest contain
valuable information for the understanding of brain mecha-
nisms in health and disease [8]. In this study we present such
a dynamical analysis of functional activity. We successively (i)
suggest a way to combine the spatio-temporal fMRI data with
the anatomical brain network, (ii) propose a new graph-based
technique able to retrieve dynamical interactions between brain
regions, and (iii) show how relevant information can be extrac-
ted and visualized from dynamic activation components. To va-
lidate our approach, we rely on the presence of RSNs. Among
the hundreds of activation components, a significant portion of
them display strong similarities and are close to one or several
well-known activation schemes corresponding to RSNs.

We explore a dataset composed of fMRI and dMRI recor-
dings of 75 healthy volunteers. Each cortex has been divided



into 68 regions with Freesurfer 1 following the anatomic atlas
of [4]. The preprocessing of the fMRI and dMRI data is not
detailed here. We assume that our dataset is 1) a brain structu-
ral network of 68 nodes with unweighted connections and 2)
a time series of fMRI activity associated to each node (filte-
red and averaged from the set of voxels of each brain region).
Each patient recording is about 9 min. long at a sampling rate
of TR=1.92 s, giving L = 276 points for each time series.

One of the key concepts of our graph approach is to arrange
the data as a spatio-temporal graph. The idea is to build a graph
based on the locality or closeness of data points in space and
time. Closeness in space is given by the structural brain net-
work, as directly connected regions are more likely to interact
with each other. The neighborhood of a node in time at time t
is itself together with its one-hop neighbors, at the preceding
and following time steps t − 1 and t + 1. Those nodes are
the ones more susceptible to activate/be activated as a conse-
quence of the state of the node considered at time t. This new
mapping of the data is a convenient way to handle localization
and correlation both on the network and temporal domain. On
this graph each node will have only one value associated to it,
reducing the analysis of the brain activity to the one of a si-
gnal on the graph. Fig. 1 (left) illustrates the construction of
this graph. This approach is different from the multilayer ap-
proach of [10] as connections between layers involve neighbors
(different structure and construction) and the analysis concerns
repeated patterns within the network (different analysis).

2 The spatio-temporal graph
In practice, we build the spatio-temporal graph in four steps.

First, we use the brain network given by the (preprocessed)
dMRI data to establish the spatial connections between regions.
Let us call this graph G0. We have chosen to take a unique
brain network for the 75 patients, keeping the most common
connections among them. Secondly, we have pooled the 75
fMRI signals giving T = L × 75 time steps. We duplicate
G0 T times, one for each time-step. We define the multilayer
graph G̃ of N × T nodes to be made of the union of copies of
G0 : G̃ = ∪tGt, with t ∈ [1, T ]. A node in G̃ will be labeled
it if it belongs to Gt and is the copy of the node i on G0. The
spatio-temporal graph G is G̃ where edges linking nodes of
different layers {Gt} have been added : the third step consists
in connecting the T layers together according to the following
time-neighborhood rule. For two nodes it and jt+1 on two suc-
cessive layers, there is a connection between them if i and j
are neighbors in G0. We may control the connection strength
of the time connection by choosing a weight λ to assign to these
types of edges. The default will be λ = 1. This choice will give
equal strength to spatial and temporal connections asG0 is a bi-
nary network where weights are either 1 (connected) or 0 (not
connected).

The brain activation function f onG is now a one-dimensional

1. Software available at http ://surfer.nmr.mgh.harvard.edu/

function giving the activation rate of each node of G. It has
been normalized to zero mean and unitary variance. We as-
sume that the relevant information on the brain activity is gi-
ven for high values of |f |. Remark that negative values of f are
also a sign of activity interesting for neuroscientists. In order to
find dynamic activation components we introduce a threshold
ρ > 0. We define the graph A of activated components as fol-
lows : a node it belongs to A if |f(it)| > ρ. The dynamic
activation components are the weakly connected components
(subgraphs) of A. The choice of ρ is empirical. Too high, it
leads to a reduced number of small subgraphs, difficult to in-
terpret. Too low, it gives a huge amount of components where
a part of them are due to the noise inside the activation signal.

3 Analysis of dynamic activation com-
ponents

Due to the diversity of activity inside the brain, it is natural
to assume the extracted components to be quite different from
each other. However, there is evidence that certain activation
patterns related to “resting state networks” regularly appearing
during the recording of patients at rest [12]. While RSN activa-
tion patterns are not expected to repeat in the exact same way
over a patient or a fortiori between patients, it should be pos-
sible to cluster them. Thus, to retrieve RSNs, the clustering of
dynamic activation components should be robust to noise and
group components together even if they differ slightly in shape.
We expect the main clusters (with the largest number of com-
ponents) to be closely related to the RSNs.

Dynamic activation components in their raw form cannot be
directly used as an input of a machine learning algorithm. To
cluster them, we introduce two types of feature vectors. The
first one, the dynamic-feature vector, encodes the time evolu-
tion of the activations and give information on the dynamics. It
contains the full information concerning the dynamic arrange-
ment of the component while being memory friendly and com-
putationally efficient. The second one, the static-feature vector,
is used to compare more reliably our approach to the previous
studies on (static) RSNs ; it is a time-averaged version of the
dynamic-feature vector.

Let P` be an activation component (a connected subgraph
of A), where ` ∈ [1,M ] is the component label and M is the
number of components. The graph P` = (V`, E`) has a set of
vertices V` and a set of edges E`.

Dynamic features. Let us assume P` is activated during k`
time steps from t1 to tk`

. LetK = max` k` be the maximal du-
ration in time of a component (in number of time-steps). The
dynamic-feature vector d` describing P` is of length N × K,
with binary entries d`(j) = 1 when j corresponds to an activa-
ted node i at time step k within the component (j = i× k) and
0 otherwise. Notice that most of the vectors are very sparse :
in our case, the average number of nodes per component is 9.4
and the length of a feature vector is comprised between 204 (68
nodes times 3 timesteps) and 544 (68 nodes times 8 timesteps).



FIGURE 1 – On the left : the successive steps for the creation of the dynamic components. a) The original brain network G0 is copied for each
time step, b) temporal links are added to create the spatio-temporal graph, c) only the nodes with values above the threshold are kept, giving
the dynamic activation graph. On the right : two examples of dynamic components of our dataset. The nodes are labeled by their Id (left), name
(middle) and RSN (right). The labels lh and rh stand for left and right hemisphere respectively. In the top right figure, the activation moves from
one region to another during time (frontal to temporal lobe) but stays in the left hemisphere. In the bottom right figure, the activation spans across
several brain regions then reduces before vanishing, mostly involving the visual area. It starts from the peri-calcarine region, which stays active
during the whole process.

Static features. To compare to existing RSNs, a time-invariant
feature vector is constructed by compressing the component’s
dynamic into one normalized histogram of brain node occur-
rence. The static-feature vector s` ∈ NN has the following en-
tries : s`(j) = s̃`(j)/‖s̃`‖2, where s̃`(j) =

∑K
k=1 d`(j× k). It

is normalized using the `2-norm to help cluster together com-
ponents with similar activated brain regions but of different
temporal width.

We perform a clustering on the dynamic activation compo-
nents using the standard k-means algorithm 2 and the static fea-
tures. We validate our initial assumptions by retrieving the stan-
dard RSNs from the obtained clusters. We expect a large num-
ber of repeating components (repeated activation of the RSNs),
possibly differing by a few nodes (due to noise or other acti-
vation behaviors). As a result, in feature space, these slightly
altered components should stay close to the one representing a
RSN.

To compare our clustering with RSNs, we associate each
node of the brain network to a functional resting state network
id according to the map given by [12]. There are 7 RSNs : 1)
Visual (V), 2) somato-motor (SM), 3) dorsal attention (DA), 4)
ventral attention (VA), 5) limbic (L), 6) fronto-parietal (FP) and
7) default mode (DM) networks. Note that our anatomical atlas
of 68 nodes does not exactly correspond to the shape of these
RSNs given via fMRI data. Moreover, some RSNs are made
of small areas scattered all over the brain (dorsal attention and
fronto-parietal) which render difficult their description with our
atlas. These later two RSNs are made of only 2 and 3 atlas re-
gions respectively, which make them more difficult to detect.
As a consequence, some discrepancies appear when comparing
our results to the RSNs of the literature.

2. Using the python toolbox scikit-learn available at http ://scikit-learn.org/

Since the number of clusters k has to be set manually, we
tested different numbers of clusters (from 7 to 40). Our ex-
periments have shown that the clustering is robust : for each
experiment, a large number of clusters could be associated to
a single RSN. Moreover, a significant number of clusters stay
unaltered from experiment to experiment. We present the re-
sults of a clustering with k = 12 on Fig. 2. The clusters are
in good correspondence with the RSNs. The histograms shows
that cluster 11 is associated to the visual RSN, cluster 4 to the
somatomotor RSN, cluster 7 to ventral attention and cluster 2 to
the default mode. Only a few of the clusters contain a mixture
of RSNs.

A closer analysis of the clusters shows two categories of
components : symmetric ones with respect to the left and right
hemispheres such as cluster 2, 4, 5, 6, 7 and 11 and non-symmetric
(unilateral) ones which can be grouped by pairs such as 0-1, 8-
9 and 3-10. The coexistence of symmetric/dissymmetric com-
ponents is similar to what [9] obtains by directly clustering at
the voxel level (with 11 clusters). The pair 3-10 corresponds to
a fronto-parietal activation, which can be interpreted as a part
of the dorsal attention network (known to possess a lateralized
behavior) even if some regions are labeled as default mode net-
work. The clusters 0-1 (limbic RSN) and 8-9 contain regions of
the temporal lobe while being dissymmetric. Some components
appear to be part of more than one resting state : this is what
is also obtained in [11] where they performed a temporally-
independent component analysis ; for example, some of their
dynamic components contain part of the default mode as well
as other resting states (see their mode TFM 8, a symmetric ver-
sion of the mean component of cluster 9). It is also the case
in [1] where a sliding window ICA is used to retrieve dynamic
patterns.



FIGURE 2 – Clustering with k = 12. Distribution of the components’ nodes among the 7 RSNs for each cluster.

This demonstrates that our method is able to retrieve known
RSNs while giving new insights on their dynamics. This is
even more convincing when plotting the average component
for some of the clusters with k = 12 on Fig. 3, 4 and Fig. 1.

FIGURE 3 – Mean component of cluster 11, corresponding to the vi-
sual RSN. It is symmetric between the left and right hemispheres and
contains the peri-calcarine, the cuneus, the lingual and the lateral occi-
pital regions. The node colors correspond to the amount of activation
for each node, the scale ranges from white to dark red (for the nodes
most present in the components). White (low) to dark grey (high) indi-
cates the importance of edges between nodes at successive timesteps.
In the right part of the figure, the mean component is shown where
only the strongest edges are kept. It is cut in two parts, corresponding
to the primary and extrastriate visual cortex.

FIGURE 4 – Mean component of cluster 4, the somato-motor RSN.
Both left and right pre-central and post-central regions are active, the
post-central region being activated more often among the components
belonging to the cluster. The relatively similar edge color indicates
that all the regions equally interact with each other.

4 Conclusion
Our approach based on a spatio-temporal graph describing

brain activation patterns recovers and confirms the existence of
RSNs. It also reveals the dynamical interactions between the

main anatomical regions of the brain and precises the idea that
RSN are made of smaller blocks, interacting dynamically. The
activation patterns we obtain show interesting dynamic acti-
vity with spreading and propagation over the cortex. This work
paves the way for the creation of new tools to further compre-
hend the brain mechanism and improve diagnosis.
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