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Résumé – Nous considérons le problème de classification de signaux multicapteurs, plus particulièrement de signaux EEG dans
un contexte BCI, par sélection de caractéristiques temps-fréquence. Les caractéristiques sont recherchées sous la forme de bases de
cosinus locales (MDCT) via un algorithme de type “best basis” adapté au contexte de classification. L’algorithme est validé sur
des données BCI d’imagination motrice.

Les techniques de décision généralement développées pour le contexte BCI, ou plus généralement en neurosciences, sont souvent
basées sur des approches automatiques (réseau de neurones artificiels, SVM,...) ne permettant pas en retour une interprétation
simple des caractéristiques. L’approche proposée permet un tel retour sur l’interprétation, car les caractéristiques sont recherchées
sous la forme d’atomes temps-fréquence, proches des interprétations classiques en analyse d’EEG, qui font intervenir des bandes
de fréquence et des instants spécifiques.

L’algorithme proposé étend l’algorithme best discriminant basis de Saito en exploitant des comparaisons deux à deux des signaux
des deux bases de données (les deux classes). Les résultats de simulations numériques montrent que la méthode est capable de
retrouver des caractéristiques simulées. Les résultats sur données réelles sont tout à fait compétitifs par rapport à l’état de l’art en
termes de classification, et plus facilement interprétables.

Abstract – We consider the problem of classifying multi-sensor signals, more precisely EEG signals in the context of Brain
Computer Interfaces (BCI), by selection of time-frequency features. The features are determined among local cosine bases (MDCT)
by a “best basis” type algorithm adapted to the classification context.

In the BCI domain, or more generally in neuroscience, many classification algorithms are based upon automatic approaches
(artificial neural networks, SVM, ...) which do not allow a simple interpretation of the features. The proposed approach allows
such interpretation, since the features are determined in the form of time-frequency atoms, similarly to classic analyses of EEG
signals which involve specific frequency bands and time intervals.

The proposed algorithm generalizes the best discriminant basis algorithm by Saito, employing pairwise comparisons between the
signals belonging to two classes of data. Results on artificial data show that the method is able to determine simulated differences
between signals. Results on real data are competitive with state of the art classification algorithms and more easily interpretable.

1 Introduction and
Problem Statement

Brain computer interfaces (BCI) are devices that allow
transforming human intentions and cognitive states (char-
acterized by specific brain signals) into commands. The
interpretation of such signals relies on specific features,
which are generally estimated during a training stage. In
many successful approaches, these extracted features do
not allow an easy understanding in terms of the underlying
neurophysiological mechanisms.

In this work the classification of a signal is based upon
features whose time-frequency localization properties are
learnt from a training set. This approach exploits the
so called best basis paradigm developed by Coifman and
Wickerhauser [1, 7], which selects an optimal basis from a
library of orthonormal time-frequency bases. It also relies
on the approach developed by N. Saito in his PhD thesis [5]

(see also [6] for an adaptation to the BCI context), and
generalizes it by replacing the comparison of average signals
by systematic pairwise comparisons of signals belonging
to two classes.

The problem at hand is a typical BCI problem, but can
be transposed to many different domains. The training
set consists of observations X = {(xi, κi) , i = 1 . . . Ni},
where each xi is a realization of a multi-sensor signal x =
{x(c) ∈ RN , c = 1 . . . Nc}, and κi = 0, 1 is the class label.
The working assumption is that the features that allow
discriminating between the two classes possess specific but
unknown time-frequency signatures. More precisely: they
can be characterized by specific localization properties
which one seeks to define.

Albeit not pursued in this article, a more ambitious for-
mulation of the problem involves the additional search for
topographic information that allows class discrimination,
resulting in a simultaneous spatial, spectral, and temporal



filter.

2 Discriminant Local
Trigonometric Bases

The characterization of discriminant time-frequency local-
ization properties is tackled via the best basis approach,
applied to local trigonometric (also called MDCT) bases.

2.1 Local Trigonometric Bases

We shall work in the reference framework of the Euclidean
space H = RL of finite length signals. In full generality, a
local trigonometric basis is obtained through a segmenta-
tion of the time axis, using smooth windows, followed by
a cosine expansion of the so-obtained segments. More pre-
cisely, the integer interval ZL = {0, . . . L− 1} is split into
T sub-intervals Iτ = [aτ , aτ+1] of length `τ = aτ+1 − aτ ;
Given a family of windows ψτ , τ = 0 . . . T − 1 whose sup-
port is essentially concentrated inside the interval Iτ , and
satisfying specific compatibility conditions (see [7]), the
family of waveforms ψτn defined by

ψτn[t] =
√

2
`τ
ψτ [t] cos

[
π

(
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1
2

)
t− aτ
`τ

]
(1)

is an orthonormal basis of RL. In a time-frequency plane,
ψτn is essentially localized inside a domain which can be
represented by a rectangle Iτ×Jτn, where Jτn is an integer
interval in the frequency domain centered on the frequency
π(n + 1/2)/`τ and of width π/`τ . Various choices for
the segmentation lead therefore to different (approximate)
tilings of the time-frequency plane.

2.2 Library of Bases and Selection of the
Optimally Discriminant Basis

The best basis algorithm is based on a tree-structured
family of splittings of the integer interval ZL into sub-
intervals Ijk of length `jm = 2−jL (where j = 0, 1, ...J − 1
is the decomposition level), each splitting giving rise to
an orthonormal basis of RL. We denote by ψjkn the so-
obtained waveforms, and denote generically by Λ(B) the
index set labelling the waveforms ψλ of basis B.

The family of the bases generated that way forms a
so-called library of orthonormal bases, from which one may
seek the optimal one with respect to a given criterion. In
the considered situation, the criterion is determined by
a contrast function d : u, v ∈ R+ → d(x, y) ∈ R. Given
two signals x, y ∈ RL, assumed to be normalized (‖x‖ =
‖y‖ = 1), and an orthonormal basis from the library B =
{ψλ, λ ∈ Λ(B)}, the contrast between x and y given by a
basis B is defined by

DB(x, y) =
∑
λ

d
(
|〈x, ψλ〉|2, |〈y, ψλ〉|2

)
. (2)

Such additive contrast functions are well adapted to tree-
structured libraries, such as the ones of local trigonometric
bases. Indeed in [7] the tree structure allows the evaluation,
and thus the optimization, of the criterion over all the
bases of the library through dynamic programming. In
the numerical results displayed here, we have limited our
investigations to the case of the symmetrized Kullback-
Leibler divergence

d(u, v) = u ln(u/v) + v ln(v/u) , (3)

however several other choices are possible [5].

2.3 Training and Test

Assume we are given Nx (resp. Ny) signals x(k;c) (resp.
y(k;c)) corresponding to class X (resp. Y ). k is the trial
label, and c is the channel label. Channels can be either
electrodes, or linear combinations of electrodes determined
by CSP, LDA or other discriminant dimension reduction
methods. The goal is to determine the basis from the
library that allows to optimally discriminate between these
two classes, using the measured divergence, for example
by means of the metric defined in (3). Two strategies are
possible: to determine an optimal basis for each channel,
or to determine an optimal basis common to all channels.
Herein we limit ourselves to the second possibility, which
gave better results on the datasets we considered.
During the training phase, the following operations are
performed
• Normalization of the signals:
‖xk;c‖ = 1 and ‖yk;c‖ = 1;
computation of the coefficients of the expansions on
all the bases ψλ from the library (classes X and Y ):

αk;c
jmn = 〈xk;c, ψjmn〉 , βk;c

jmn = 〈yk;c, ψjmn〉 . (4)

Thanks to the normalization, whatever the basis B,
we have∑

λ∈Λ(B)

|αk;c
λ |

2 = 1 and
∑
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|βk;c
λ |

2 = 1 (5)

for all k, c.
• For each signal pair (xk;c, y`;c) and each basis vector
ψλ, computation of the divergence
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λ |
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λ |2
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λ |
2 log
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• For each λ, evaluation of the average divergence d[λ]
(average with respect to signals and channels).
• Determination of the best basis

B∗ = arg max
B

∑
λ∈Λ(B)

d[λ] (7)

and selection of the basis vectors that contribute
most significantly to the discrimination, in terms of
their average divergence.



During the test phase the coefficients with respect to the
optimal basis of each signal from the test dataset are com-
puted. In the simplest case, each signal could be assigned
to the class to which the divergence is the lowest. For
the results presented in this paper a linear kernel support
vector machine (SVM) was used as classifier (LIBLINEAR:
[11]).

3 Results

3.1 Data and Pre-Processing

The method has been tested on a motor imagery dataset.
Our data consists of 64-channel EEG recordings of 11 sub-
jects. The data was sampled at 2048 Hz and subsequently
downsampled to 256 Hz. Each trial started with the user
fixating a cross on a screen for 2.5 seconds during which
he was allowed to blink. The subject was then presented
with a right or left visual cue lasting 1 second. After the
appearance of the visual cue the subject had to imagine
moving the corresponding ipsilateral hand.

Each subject performed both left and right hand motor
imagery 80 times. The order of the trials was random.

The characteristic signals for the considered task are ex-
pected to show up in specific frequency bands and locations
and correspond to mu-rhythms and beta-rhythms. Signals
have been band-pass filtered to keep the frequency band
4-28 Hz. Both the Common Spatial Pattern [8, 9] and
the Common Spatio-Spectral Pattern algorithms [10] were
used as spatial filters during pre-processing. As suggested
in [9] the output of the 4 most important filters was used
for further processing.

3.2 Tests and Results

At first the method is illustrated on simple artificial data.
Class X is given by a sample EEG signal of 8 seconds
length and class Y is given by the same signal to which a
12 Hz sine wave was added from 2 s to 3 s and a 20 Hz
sine wave was added from 4.5 s to 6.5 s. Figure 1 shows
that the selected best basis contains functions localized in
the regions of the time-frequency plane corresponding to
the differences between the two signals.

Similar plots are given in Figure 2 for two of the subjects
performing motor imagery tasks, illustrating the tiling
of the time-frequency plane and the magnitude of the
divergence between the two classes of basis coefficients. The
divergence is evidently the largest in the mu-band. Figure 3
shows a comparison of classification results obtained using
the proposed method to classification results obtained using
the logarithm of the variances of the CSP (or CSSP) filtered
signals as feature vectors. In both cases LIBLINEAR was
used as classifier using leave-one-out cross-validation.

Fig. 1: Magnitude of the symmetrized Kullback-Leibler
divergence in phase space for the test on synthetic data.
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Fig. 2: Magnitude of the symmetrized Kullback-Leibler
divergence in phase space for two of the subjects. The
start of the visual cue corresponds to second 1 in the plots.
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Fig. 3: Comparison of classification results using the output of the CSP filter (left) and using the output of the CSSP
filter (right).

4 Conclusions

The presented method performs a pairwise comparison
between signals belonging to two different classes to deter-
mine which time-frequency features maximize a specific
divergence measure between the two classes. A test on mo-
tor imagery data shows that the method was able to detect
differences in the mu-band but not in the beta-band. This
may change if in the future we will be able to incorporate
the spatial filtering into the best basis selection algorithm.
As far as the classification accuracy is concerned, by means
of the proposed method we were able to improve on the
recall rates of 10 out of 11 subjects when using the CSP
filtered data and on 8 out of 11 subjects when using CSSP.
An interesting topic for further research will be the analy-
sis of the robustness of the selected basis across different
subjects. We would also like to investigate the impact of
the size of the training set and the percentage of pairwise
comparisons that are actually required to select a stable
best basis.
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