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Résumé – Cet article est consacré à la détection de particules de très haute énergie, dites “muons”, étudiées dans le cadre de
l’observatoire international Pierre Auger. On propose une modélisation statistique originale des données qui permet de traiter
efficacement la trace laissée par les muons sur les détecteurs en ignorant le signal de nuisance généré par d’autres particules
plus nombreuses mais de moindre intérêt. Mme si elle requiert l’utilisation de méthodes de Monte Carlo par châıne de Markov,
l’approche proposée reste de complexité raisonnable, compte tenu des contraintes de l’application, et améliore significativement
l’état de l’art.

Abstract – This paper addresses the problem of detection and estimation of physical particles called muons encountered in the
Auger project. One of the main challenges in this work is to separate the signals generated by muons from the ones generated
by electro-magnetic (EM) particles. In this paper, we provide a simple approximate model to capture the contributions of the
EM particles which enables us to separate the two signals efficiently. Next, we design an Reversible Jump MCMC (RJ-MCMC)
sampler to count muons and estimate their parameters. The results show the capability of the proposed model and sampler in
detecting and estimating muons in mixed signals.

1 Introduction

The Auger project [1] is aimed at studying ultra-high en-
ergy cosmic rays, with energies in order of 1019eV, the
most energetic particles found so far in the universe. The
long-term objective of this project is to study the nature of
those ultra-high energy particles and determine their ori-
gin in the universe. Nevertheless, they are not observed
directly. In fact, when they collide the earth’s atmosphere,
a host of secondary particles are generated, some of which,
mostly “muons”, finally reach the ground. To detect them,
the Pierre Auger Observatory was built which consists of
two independent detectors; an array of Surface Detectors
(SD) and a number of Fluorescence Detectors (FD).

The number of muons and their arrival times can be
used as indications of both the chemical composition and
the origin of the primary particles (see [1] for more infor-
mation). Here, we concentrate on the signal decomposi-
tion problem, where the goal is to count the number of
muons and estimate their individual parameters from the
signals observed by the SD detectors. To do so, one of the
main challenges is to deal with the “background signal”
generated by Electro-Magnetic (EM) particles making the
problem of muon counting rather difficult.

Here, we follow a Bayesian paradigm and use the hier-
archical model developed in [2, 4] for modeling the muonic
signal. Since, the posterior distribution of the unknown

parameters is only available up to a normalizing constant,
we opt for approximating it using Monte Carlo simulation
methods [6]. More precisely, we use the Reversible Jump
MCMC (RJ-MCMC) sampler proposed by [3], which en-
ables us to simultaneously count the muons and estimates
their individual parameters.
In this work, we concentrate on the crucial issue of mod-

eling the signal generated by the EM particles. For this
purpose, one should note that modeling them “exactly”
and counting them using the RJ-MCMC sampler is not
an efficient solution, as they are numerous (their number
can reach even a few hundreds). Moreover, they are less
informative compared with muons when making inference
about the parameters of the original particle. Hence, here,
we propose an approximate model to capture their contri-
bution in a less computationally expensive approach. In
fact, in the Auger project, each primary particle gener-
ates traces in a few SD tanks (typically a few tens), and,
thus, the processing of each single trace should remain
manageable in terms of computation time.
This paper is organized as follows. Section 2 describes

briefly the hierarchical model developed in [2, 4] for mod-
eling the muonic signal and the proposed approximate
model for describing EM contributions. Next, in sec-
tion 3 we follow a Bayesian framework to jointly detect
the muons and estimate their parameters using an RJ-
MCMC sampler that we designed for this problem. Sec-



tion 4 discusses the results showing the performance of
the proposed algorithm. Finally, Section 5 concludes the
paper and gives possible future directions.

2 Hierarchical Model

This section describes the hierarchical model we devel-
oped for modeling both the muonic signal [2, 4] and the
contributions of the EM particles.

When a muon (or an EM particle) crosses a SD tank, it
generates photoelectrons (PE’s) along its track that are,
then, captured by detectors and create a discrete observed
signal. We denote the vector of length N of the observed
signal1, generated by both muons and the EM particles,
by n = (n1, . . . , nN ) ∈ N

N , where the element ni indi-
cates the number of PE’s deposited in the time interval

[ti−1, ti) , [t0 + (i− 1)t∆, t0 + i t∆),

where t0 is the absolute starting time of the signal and t∆ =
25 ns is the signal resolution (length of one bin).

Each particle has two component-specific parameters,
namely, the arrival time t⋆ and the signal amplitude a⋆;
in what follows, replace the subscript ⋆ by µ for muons and
by EM for the EM particles. The absorption process of the
PE’s deposited by either muons or EM’s is modeled by a
non-homogeneous Poisson point process with the expected
number of PE’s in the bin i given as [2, Section 2.2]

n̄⋆,i(a⋆, t⋆) = a⋆

∫ ti

ti−1

pτ,td(t− t⋆)dt, (1)

where pτ,td(t) is the time response distribution, td is the
rise-time and τ is the exponential decay (both measured
in ns). Note that the total expected number of PE’s is
n̄i = n̄µ,i + n̄EM,i, for i = 1, . . . , N .

2.1 Model for the muonic signal

Assuming independence of muons, the expected number
of PE’s in the ith bin, i.e., n̄µ,i, given Nµ, tµ, and aµ

becomes

n̄µ,i =

Nµ∑

j=1

n̄µ,i(aµ,j , tµ,j), (2)

where n̄µ,i(aµ,j , tµ,j) is defined in (1).
To complete the model, following [2, 4], we assume the

muons’ arrival times and the signal’s amplitudes are in-
dependent a priori. The muonic signal amplitude aµ de-
pends on muon’s energy and its track-length inside the
water tank. The muon’s track-length distribution has a
geometrical expression based on the zenith angle θ and
water tanks geometry which is derived in [5].

The prior distribution of muon’s arrival time, i.e., p(tµ),
is assumed to be a log-Normal distribution LN (a, b) shifted

1Note that here we use the number of observed PE’s as the ob-
served signal for simplicity.

by t0 ns to the right. Finally, a truncated Poisson with
mean N̄µ is assigned on the number Nµ of muons.

2.2 Approximate model for the EM signal

Due to the fact that EM particles are often numerous com-
pared to the muons (in the order of a few hundreds in
some cases), handling them using the RJ-MCMC sampler
is not realistic. In addition, counting them accurately is of
less concern, as they are barely informative in estimating
the characteristics of the original particle. Therefore, in
this paper, we propose to approximate their contribution,
which is a marked Poisson point process, by a simpler
process which is controlled by the hyperparameters of the
prior distributions assigned over EM parameters.
More precisely, we approximate the contribution of EM’s,

i.e., n̄EM, and we assume that it is drawn from a distribu-
tion D (mEM, ΣEM)—a distribution with the mean vector
mEM and covariance matrix ΣEM.
For the sake of efficiency of the sampler and at the price

of losing correlation between adjacent bins, we assume
that the contribution of the EM particles are independent
between the bins. Therefore, we write the expected num-
ber of PE’s in the bin i, i = 1, . . . , N , as n̄i = n̄µ,i+n̄EM,i,
where n̄EM,i ∼ D

(
mEM,i, σ

2
EM,i

)
.

The means mEM,i and variances σ2
EM,i are derived by

calculating the first and second moments of the marked
Poisson point process according to which n̄EM,i is dis-
tributed; see (1). This process is controlled by the hy-
perparameters of EM’s. To proceed, we assign log-normal
LN (a, b) prior distributions over both their arrival times
tEM and their signal’s amplitude aEM. We denote by
ψEM = (N̄EM, aaEM

, baEM
, atEM

, btEM
) the vector of hy-

perparameters of the EM particles, which control the dis-
tribution D

(
mEM,i, σ

2
EM,i

)
.

To choose D
(
mEM,i, σ

2
EM,i

)
from the parametric family

of distributions, one should note that it should live on R+,
as n̄i cannot take negative values. Moreover, we want a
distribution that alleviates the sampling steps. Therefore,
we opt for using a Gamma distribution G(αEM,i, βEM,i),
with the shape αEM,i and the scale βEM,i, for n̄EM,i; since
Gamma is a conjugate distribution for the mean parame-
ter of a Poisson distribution (note that p(ni | n̄i) is Pois-
son). By a simple reparametrization, we have αEM,i =
m2

EM,i/σ
2
EM,i and βEM,i = σ2

EM,i/mEM,i.
Therefore, we approximate distribution of n̄ by

p(n̄ |mEM,σ2
EM,aµ, tµ, Nµ)

=

N∏

i=1

p(n̄i|mEM,i, σ
2
EM,i,aµ, tµ, Nµ) =

N∏

i=1

G(α′

i, β
′

i),

where

α′

i =
(mEM,i + nµ,i)

2

σ2
EM,i

and β′

i =
σ2
EM,i

mEM,i + nµ,i

·



Using the conjugacy of the Gamma prior distribution
over the mean of the Poisson distribution, we can integrate
n̄i out and derive the likelihood for bin i as

p(ni | mEM,i, σ
2
EM,i,aµ, tµ, Nµ)

=
1

ni!
·
(β′

i/(β
′

i + 1))
(ni+α′

i)

(β′

i)
α′

i

·
Γ(ni + α′

i)

Γ(α′

i)
· (3)

This makes the sampling faster, as we do not need to
generate n̄i, for i = 1, . . . , N .

Finally, the joint posterior distribution of all the un-
known parameters is

p(Nµ,aµ, tµ,ψEM | n) ∝ p(n |mEM,σ2
EM,aµ, tµ, Nµ)

p(tµ,aµ | Nµ) p(Nµ)f(mEM,σ2
EM | ψEM) p(ψEM),

(4)

where f(mEM,σ2
EM | ψEM) denotes the relation between

the moments and hyperparameters of the EM particles.
The posterior (4) is considered as the target distribution
for the RJ-MCMC sampler described in the next section.

3 Estimating the parameters

In this section, we describe the RJ-MCMC sampler de-
veloped for simulating from the posterior distribution (4).
Figure 1 describes one iteration of such a sampler.

This sampler is divided into two main blocks; first block
is a conventional RJ-MCMC sampler which aims at sam-
pling from the joint posterior distribution of the num-
ber Nµ of muons and their parameters assuming hyperpa-
rameters of the EM particles ψEM are fixed, i.e., target-
ing p(Nµ,aµ, tµ | ψEM,n). It consists of two move types;
a within-model move which updates the muon parame-
ters, i.e., tµ and aµ, assuming the number Nµ of muons is
known and a between models move that proposes a jump
in the model space by proposing birth or death of a com-
ponent [3, 4].

The second block simulates the hyperparameters of the
EM particles conditioning on the parameters of muon2.
Since these hyperparameters are in the highest level of
hierarchy in the model, they get very little information
from the observed data. Hence, an accurate estimate of
them is not the purpose of this step. The main goal here is
to separate the background signal from the muonic signal,
to have a better inference on the number Nµ of muons and
their arrival times.

To proceed, first, we need to assign prior distributions
over the EM’s hyperparameters. It is known from physics [4]
that the distribution of arrival times of the EM parti-
cles has a heavier tail than the one of arrival time of
muons. Moreover, the distribution of their amplitudes

2Other option would be to maximize the likelihood p(n | ψEM)
in the spirit of empirical Bayes framework using a Monte Carlo Ex-
pectation Maximization algorithm. However, we found that sam-
pling ψEM is a much simpler approach.

is concentrated on small values compared to the ones of
muonic signal amplitudes. Constrained uniform distribu-
tions were assigned as prior distributions over ψEM. These
constraints prevents some undesired behavior of the sam-
pler, such as, the background signal taking parts of muonic
signal. Finally, to update ψEM, a mixture of two normal
random walk kernels are used.

At the (m+ 1)th iteration of the sampler

Update Muon (EM Fixed): Update muon pa-
rameters assuming EM parameters are fixed;

• generate (N
(m+1)
µ ,a

(m+1)
µ , t

(m+1)
µ )

from the target posterior distribution

p(Nµ,aµ, tµ | ψ
(m)
EM ,n) using the RJ-

MCMC sampler.

Update EM (Muon Fixed): Update EM parame-
ters assuming muon parameters are fixed;

• generate ψ
(m+1)
EM from the tar-

get posterior distribution p(ψEM |

N
(m+1)
µ ,a

(m+1)
µ , t

(m+1)
µ ,n) using

Metropolis-Hastings (MH).

Fig. 1: One iteration of the proposed sampler designed
for generating samples from the target distribution (4).

4 Results and discussion

In this section, we show the capability of the proposed
model and the designed sampler in detecting muons and
estimating their parameters. The data we used consist of
simulated showers with Proton and Iron as their chemical
composition of the original particle. For Proton and Iron,
we have access to 3382 signals from 89 and 1221 signals
from 30 showers, respectively. The energy of showers are
close to 1019 eV and their zenith angle θ ∈ [45◦, 60◦].
In order to illustrate the pattern of the observed signals

we are dealing with, as well as the obtained results using
the proposed Bayesian method, an example with eleven
muons is presented in Figure 2; (a) top panel shows the
observed signal, while bottom panel shows the muonic sig-
nal in red and the EM signal in blue. It can be seen that
certain peaks in the EM signal (in blue) are very simi-
lar to the ones generated by muons (in red), such that
the total signal (on top) is difficult to analyze (recall that
the objective is to separate the two signals and count the
muons). Figure 2 (b) shows the marginal posterior dis-
tributions of the number Nµ of muons (left) and sorted
arrival times given Nµ (right), obtained using 40 000 sam-
ples generated by the designed RJ-MCMC sampler. Each
line corresponds to a value of Nµ, for 8 ≤ Nµ ≤ 11. The



#
P
E

#
P
E

t [ns]
−500 0 500 1000 1500 2000 2500 3000
0

100

200

300

400

0

100

200

300

400

(a)

N
µ

p(Nµ|n) t [ns]

−500 −250 0 2500 0.2 0.4

8

9

10

11

(b)

Fig. 2: An example with eleven muons; (a) top panel
shows the observed signal, while bottom panel shows the
muonic signal in red and EM signal in blue. (b) marginal
posterior distributions of the number Nµ of muons (left)
and sorted arrival times given Nµ (right).

true arrival times are indicated by vertical dashed lines.
From figure 2 (b) it can be observed that the RJ-MCMC

sampler has explored the models M8 to M11, M10 has
the greatest posterior probability, p(Nµ = 10 |n) ≃ 0, 40.
More precisely, all the eleven muons have been detected
except the one located at t = −174 ns.

Next, we show the average performance of the sampler
on all available signals in a systematic way. To obtain
these results, 40 000 iterations of the sampler described
in the previous section were run and the first half of the
chains was discarded as burn-in period. Figure 3 presents
normalized muon detection error defined as (N̂µ−Nµ)/Nµ,

where N̂µ corresponds to the model with the highest pos-
terior probability. The mean±standard deviation of the
normalized errors is 0.12±0.21 and 0.1±0.15, for Proton
and Iron, respectively.
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Fig. 3: Distribution of normalized muon detection error;
top panel Proton (3382 signals from 89 showers) and bot-
tom panel Iron (1221 signals from 30 showers).

5 Conclusion

In this paper, we proposed a hierarchical model and an
RJ-MCMC sampler for the problem of joint detection and
estimation of muons. Presented results showed the effi-
ciency of the proposed Bayesian method.
Recall that so far we used the observed number of PE’s

as signal for simplification. Hence as a future work, we
need to generalize the designed sampler to be able to pro-
cess the “actual” Auger signal, which are also affected by
measurement noise.
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