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Résumé – Nous étudions le problème de l’estimation de ruptures structurelles dans un signal aléatoire à longue mémoire du
type FARIMA(p, d, q). Le nombre de ruptures et leurs localisations sont inconnus ainsi que les ordres (p, d, q) et les paramètres
de chaque sous-série. Nous proposons une procédure basée sur des estimateurs du maximum de vraisemblance et un critère
d’information permettant d’estimer les points de rupture et les paramètres des sous-séries à longue dépendance. On montre par
des simulations de Monte Carlo que la méthode fonctionne bien sur des modèles FARIMA par morceaux quand chaque sous-série
contient un nombre raisonnable de données de l’ordre de 800.

Abstract – We consider the problem of estimating the structural changes in a long memory piecewise FARIMA processes.
The number of break points as well as their locations, the orders and the parameters of each sub-segments are assumed to be
unknown. A 4-step procedure based on maximum likelihood estimate and distance criteria is proposed to find out the break
points and to estimate the parameters of each segment. Its effectiveness is shown by Monte Carlo simulations even when the
length of piecewise stationary sub-segment is above 800.

1 Introduction

An increasing number of studies have been witnessed in
two issues. On the one hand, issue related to estimation,
testing and computation for piecewise models involving
structural changes receives increasing interest in litera-
ture, e.g Bai (1997), Andrews (2003) and Bai and Per-
ron (2006). On the other hand, issue related to station-
ary processes exhibiting long range dependence (LRD)
has been observed in many areas, including hydrology,
meteorology, economics and finance, and telecommunica-
tions; see, for example, Beran (1994), and Park and Will-
inger (2000). Commonly used model for such LRD pro-
cesses is the fractional autoregressive integrated moving-
average (FARIMA) model, introduced by Granger and
Joyeux (1980) and Hosking (1981). The main feature of
the stationary FARIMA(p, d, q) process is that its auto-
covariance function declines at a hyperbolic rate, slower
than geometric rate of stationary ARMA(p, q) processes.

But less attention has been paid to the problem of mod-
eling a process in the presence of both structural changes
and LRD because they are easy to confused. The possi-
bility of confusing long memory and structural change has
of course arisen occasionally, in literatures of mathemati-
cal statistics like Bhattacharya et al. (1983) and Künsch
(1986). Kuan and Hsu (1998) points out that even the
structural test statistics of Hidalgo and Robinson (1996)
designs specifically for the famous FARIMA data with

known potential structural change date may still have
large size distortions in small samples. Nunes et al. (1995)
shows that the stationary LRD processes is likely to incur
a spurious structural change, because many well-known
structural change tests may suggest a structural change
has occurred, even though there is no such change at all in
the LRD processes. So people prefer to study the partial
structural change model in which only some coefficients
are allowed to change. For example, Ray and Tsay (2002)
assumes that the ARMA parameters are constant. This
partial structural change model can not meet the needs
both in theory and in practice. In theory, accurate esti-
mation of a FARIMA(p, d, q) model requires a large sample
of data, which in turn increases the chance of structural
changes over time. In practice, as said in Stoev et al.
(2006) and Song et al. (2008), the assumption that real
data can be modeled by a stationary process with con-
stant parameters may be unrealistic.

Therefore, a piecewise stationary model with more flex-
ibility in modeling structural changes and long memory,
as well as the corresponding estimation procedure seems
to be needed. This paper intends to fill this gap. The
remainder of the paper is organized as follows. Section 2
outlines the piecewise stationary FARIMA model descrip-
tion, Section 3, a 4-step fitting procedure is described.
Section 4 applies the procedure to simulated data. Sec-
tion 5 concludes.



2 Model description

Broadly speaking, the original data in the piecewise model
may have several stationary sub-segments in where mod-
els’ coefficients keep unchanged. A node between the two
sub-segments is the break point (BP) where the structure
changes. We suppose that the non-stationary process Yt,
t = 1, . . . , n, can be segmented into m + 1 blocks of sta-
tionary FARIMA processes. For j = 1, . . . ,m, denote the
BP between the jth and (j + 1)th FARIMA processes as
τj , and set τ0 = 1 and τm+1 = n+ 1. Then the jth block
of {Yt} is modeled by

Yt = Xt,j , τj−1 ≤ t < τj , (1)

where Xt,j is the FARIMA (pj , dj , qj) process defined like
(2)

φj(B)Xt,j = ψj(B)(1 −B)−dj ǫt, (2)

B is the backward operator BXt = Xt−1, εt is a sequence
of zero-mean iid random variables with finite variance σ2

ε ,
dj ∈ (0, 1/2), and the polynomials φj(z) = 1−φ1z−· · ·−
φpz

p and ψ(z) = 1+ψ1z+ · · ·+ψqz
q with real coefficients

have no common zeros and neither φ(z) nor ψ(z) has zeros
in the closed unit disk {z ∈ C : |z| ≤ 1}. The process
(1 −B)−dǫt is defined by

(1 −B)−dǫt =

∞
∑

k=0

ϕk(d)ǫt−k

where ϕ0(d) = 1 and ϕk(d) =
∏k

s=1
d+s−1

s
for k ≥ 1.

Since d < 1/2,
∑∞

k=0
ϕk(d)2 < ∞ and the series in (1 −

B)−dǫt converges in the mean square sense. Yt is charac-
terized by slowly decaying non-summable autocovariances

γ(k) = Cov(Xt,Xt+k) ∼ cγ |k|
2d−1.(|k| → ∞)

Let βj = (pj ; qj ;αj) the parameters of the jth model,
where P and Q are the highest order of all (pj , qj), αj =
(dj ;φj,1, . . . , φj,pj

, . . . , φj,P ; θj,1, . . . , θj,qj
. . . , θj,Q), φj,g =

0 when g > pj , and θj,g = 0 when g > qj . βj is constant
on each interval [τj−1, τj).

3 Estimation procedure

The problem of fitting model (1)–(2) to data consists in
finding (τ1, . . . , τm, β1, . . . , βm+1). The first problem is to
estimate the BPs accurately, which can be realized by de-
tecting the structural parameters changes. It is shown in
Stoev et al. (2006) that some of the best available tech-
niques to estimate the parameters may be misled by non-
stationary characters of the observed time series, and some
of these non-stationarity effects can often be alleviated by
estimating the parameters using data locally. That is to
say, it is better to divide the original time series into a set
of elementary sub-series of length E and use the data in
the same sub-series to get a local parameter estimation.

Predefining a suitable length E for the elementary sub-
series is not always an easy task: on the one hand, due to
LRD properties, a reasonable number of observations are
needed to obtain adequate parameter estimates, and then
E can’t be too short; on the other, the probability of meet-
ing a BP increases as E grows. E should vary with the
hidden true model order and the estimate method. Hence
some restriction should be put on E, and E is chosen by
empirical experience.

In the following, we consider the truncated series formed
by the K = [n/E] elementary sub-series defined on the
intervals Ik = ((k − 1)E, kE] for k = 1, . . . ,K. We make
the following assumptions:

(i) the numberm of BPs of the truncated series is known
and m ≤ K/2 (see Remark 1 when m is unknown);

(ii) there is at most one BP in each interval;

(iii) at least one interval separates two consecutive BPs.

Then, the m BPs τj , j = 1, . . . ,m, are dispersed into a
few elementary intervals.

The following four steps procedure is proposed to fitting
model (1)–(2) to a local stationary time series.

Step 1 : Local estimation. For each interval Ik, a
pair (p̂k, q̂k) is selected by employing the Bayes Informa-
tion Criterion (BIC) as suggested in Torre et al. (2007),
and the model’s parameters αk are estimated by the Gaus-
sian maximum-likelihood estimates (MLE) based on au-
toregressive approximations α̂k, see e.g. Granger and Joyeux
(1980). Therefore, Step 1 gives the local estimates β̂k =
(p̂k, q̂k, α̂k) for k = 1, . . . ,K.

Step 2 : Selection of intervals with a BP. If model (1)–

(2) is suitable for the data, one expects that β̂k is close
to the true values of the parameters when there is no BP
in the interval Ik. Now, if there is a BP in Ik and no BP
in Ik−1 and Ik+1, β̂k should be significantly different from
both β̂k−1 and β̂k+1. Then, let k0 = 0, km+1 = K, and

(k̂1, . . . , k̂m) = argmin
1≤k1<···<km<K

m+1
∑

j=1

kj
∑

k=kj−1+1

(

‖α̂k − ᾱj‖
2 + ψ(|p̂k − p̄j |) + ψ(|q̂k − q̄j |)

)

, (3)

where ᾱj =
1

kj − kj−1

kj
∑

k=kj−1+1

α̂k, p̄j (resp. q̄j) is the

order which is the most frequently selected among the or-
ders p̂k (resp. q̂k) for k = kj−1 + 1, . . . , kj . In the case
where p̄j (resp. q̄j) is not unique, the lowest order is cho-
sen. Function ψ(·) is positive and strictly increasing. Let
Jk = ((k− 0.5)E, (k+0.5)E] for k = 1, . . . ,K − 1. We se-
lect the intervals (J

k̂1
, . . . , J

k̂m
) as being those containing

a BP.
Step 3 : Estimation of the BPs. Suppose that

all the intervals J
k̂j

are selected properly, i.e., τj ∈ J
k̂j

.

Therefore, for any fixed j, there is no BP in the “previous”



block between J
k̂j−1

and J
k̂j

, viz. ((k̂j−1 + 0.5)E, (k̂j −

0.5)E] where we set k̂0 + 0.5 = 0, and we define β̂p as
the MLE of βj based on the data in this block. In the

same way, let β̂n be the MLE of βj+1 based on the data

in the “next” block between J
k̂j

and J
k̂j+1

, viz. ((k̂j +

0.5)E, (k̂j+1 − 0.5)E] where we set k̂m+1 − 0.5 = K. We

treat β̂p and β̂n as two benchmarks. These estimates are
more precise than any local estimate calculated in Step 1
since they involve more data. Suppose that l ∈ J

k̂j
is

the BP τj . Then we can calculate the MLE β̂lp of βj

and β̂ln of βj+1 based respectively on ((k̂j−1 + 0.5)E, l]

and (l, (k̂j+1 − 0.5)E]. These estimates should be close to

benchmarks β̂p and β̂n, respectively. Hence, our choice of
the BP estimate τ̂j is based on the following criterion

τ̂j = argmin
l∈J

k̂j

(

‖α̂lp − α̂p‖
2 +ψ(|p̂lp − p̂p|) +ψ(|q̂lp − q̂p|)

+ ‖α̂ln − α̂n‖
2 + ψ(|p̂ln − p̂n|) + ψ(|q̂ln − q̂n|)

)

. (4)

To reduce the complexity, β̂lp and β̂ln are calculated using
the data in (l − E, l) and (l, l + E), respectively, and this
gives good results in practice as shown in Section 4.

Step 4 : Estimation of the parameters of each
stationary block. Once (τ̂1, . . . , τ̂m) are obtained, the
parameters βj of the stationary sequence Xt,j for j =
1, . . . ,m+1, can be estimated on the basis on the data in
(τ̂j−1, τ̂j ], where τ̂0 = 1 and τ̂m+1 = KE.

Remarque 1. The procedure assumes that the numberm
of BPs is known, but of course m is unknown in practice.
One way to estimate m consists in increasing sequentially
one by one the number of BPs in the procedure. Indeed,
when estimating a single BP model in the presence of mul-
tiple BPs, the estimate of the interval which contains the
BP will be typically one of the true intervals with a BP,
namely the one which is dominant in the sense that select-
ing this interval allows to minimize the sum of squared (3)
where m = 1. Next, we minimize (3) with m = 2 which
gives two dominating intervals with a BP. When iterating
this process beyond the true number of BPs, two intervals
are founded which are very close to each other and corre-
spond to the same BP. This allows to determine the true
number of BPs when the BPs are not too close to each
others. We show in Section 4 that this method for finding
m works well when at least 2E data separate each BP.

4 Simulation

We illustrate the estimation procedure and show its ef-
fectiveness by a simple Monte Carlo simulation. In this
example, the target piecewise time series FARIMA(p, d, q)

process {Yt}, t = 1, . . . , n is generated by

Yt =











0.3Yt−1 + (1 − 0.7B)(1 −B)−0.2ǫt, if 1 ≤ t < τ1,

(1 −B)−0.4ǫt, if τ1 ≤ t < τ2,

(1 + 0.4B)(1 −B)−0.3σ3ǫt, if τ2 ≤ t ≤ n,

(5)
where n = 20000 and ǫt ∼ iid N(0, 1). Two BPs are at
τ1 = 8200 and τ2 = 13800. We set E = 2000, therefore
K = 10 and two BPs fall within the elementary interval
I5 and I7; the intervals with a BP respectively are J4 and
J7. All results are based on 100 realizations of process (5).

Table 1 exhibits the most frequently selected orders for
each elementary intervals in Step 1. For most Ik’s, these
orders are the true ones. Observe that BIC performs well
for detecting the low orders zero and one. Of course, when
there is a BP and the order changes in the elementary
intervals I5 and I7, the order given by BIC is less reliable
(see the columns in bold in table 1).

Sub-series 1 2 3 4 5
Order (p̂k, q̂k) (1,1) (1,1) (1,1) (1,1) (0,0)

Frequency 79 80 77 79 45
Sub-series 6 7 8 9 10

Order (p̂k, q̂k) (0,0) (0,0) (0,1) (0,1) (0,1)
Frequency 93 69 83 85 88

Tab. 1: Selected orders in Step 1.

After the local estimation (Step 1), we calculate the in-
tervals with a BP (Step 2) corresponding to the BPs num-
bers m = 1, . . . , 4. For m = 1, 2, all the selected intervals
in 100 realizations are well separated. For m = 3, 4, we
find intervals close to each others in the same 100 realiza-
tions, which hints that the number of BPs should be 2.
Table 2 gives the selected intervals in the 100 simulations
for m = 2, 3 (the last column for each case indicates the

number of frequencies the (k̂1, k̂2) or (k̂1, k̂2, k̂3) are se-
lected). We see that when the BPs number used in Step 2
is the true BPs number plus one, the additional interval
chosen by the procedure is close to an interval containing a
BP. When m = 2, some selected intervals spread to a few
intervals near the right ones. The estimation of the first
interval diffuses from J2 to J5, that of the second interval
from J5 to J8. This is partly caused by the impreciseness
of the order selection in Step 1.

m = 2 m = 3

k̂1 k̂2 % k̂1 k̂2 k̂3 %
4 7 71 4 7 8 38
4 8 14 4 5 7 23
3 7 5 3 4 7 18
2 5 5 4 6 7 12
2 7 3 5 7 8 3
5 8 2 Others cases 6

Tab. 2: Selected intervals in Step 2 for m = 2, 3.



Table 3 presents the sample means µ̂(λ̂j) and standard

deviations σ̂(λ̂j) of the BPs estimation in Step 3 over the
100 realizations. Following Davis et al. (2006), we use
the standardized parameter λj = τj/n. We see that the
estimation are close to the true values and the standard
deviations are quite small.

λj 0.410 0.690

µ̂(λ̂j) 0.390 0.690

σ̂(λ̂j) 0.005 0.006

Tab. 3: Locations of BPs estimation in Step 3.

Table 4 gives the most frequently selected orders and
the corresponding sample means and standard deviations
of the parameters estimates in Step 4 for each stationary
segment identified in Step 3. We see that the true orders
are well identified and the estimated parameters are quite
near to the true values given in (5).

Estimate Segment Xt,j

β̂j 1 2 3
(p̂j , q̂j) (1,1) (0,0) (0,1)

Frequency 90 92 96

µ̂(d̂j) 0.20 0.39 0.30

σ̂(d̂j) 0.04 0.05 0.04

µ̂(φ̂j) 0.31 - -

σ̂(φ̂j) 0.01 - -

µ̂(θ̂j) -0.69 - 0.40

σ̂(θ̂j) 0.02 - 0.04

Tab. 4: Orders and parameters estimation in Step 4.

5 Conclusion

In this paper, we have proposed a piecewise FARIMA
model and the methodology for fitting it to a piecewise
stationary long memory signal. This model is able to cap-
ture the structural change properties of the signal, it is
flexible and allows to model simultaneously long and short
range dependence. The model fitting consists in a 4-step
procedure designed to estimate both the BPs and the pa-
rameters. Simulations have shown that the practical per-
formance of our method for the above piecewise FARIMA
process is very good.
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