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Résumé – Dans le contexe des modèles de fouillis polarimétriques non gaussien, ce papier présente une application des récentes avancées dans
le domaine des processus sphériquement invariants (SIRV) pour la l’estimation de la matrice de cohérence dans des zones de fouillis hétérogène.
Les données polarimétriques radar sont décrites complètement à travers deux paramètres indépendant : le span et la matrice de cohérence
normalisée. La matrice de cohérence normalisée décrit l’information polarimétrique tandis que le span montre la puissance rétrodiffusée. À
l’aide du modèle SIRV, une nouvelle distance au sens du maximum de vraisemblance est introduite pour segmenter les images polarimétriques.
La méthode proposée est ensuite testée sur une image acquise par le système aéroporté RAMSES.

Abstract – In the context of non-Gaussian polarimetric clutter models, this paper presents an application of the recent advances in the field of
Spherically Invariant Random Vectors (SIRV) modelling for coherency matrix estimation in heterogeneous clutter. The complete description of
the POLSAR data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the
polarimetric diversity, while the span indicates the total received power. Based on the SIRV model, a new maximum likelihood distance measure
is introduced for unsupervised POLSAR segmentation. The proposed method is tested with airborne POLSAR images provided by the RAMSES
system.

1 Introduction

In a particular frequency band, the wave-media interactions
over distributed areas are generally studied using the polari-
metric covariance matrix. In general, POLSAR data are locally
modelled by the multivariate, zero mean, circular Gaussian pro-
bability density function, which is completely determined by
the covariance matrix.

The recently launched POLSAR systems are now capable
of producing high quality images of the Earth’s surface with
meter resolution. The decrease of the resolution cell offers the
opportunity to observe much thinner spatial features than the
decametric resolution of the up-to-now available SAR images.
Recent studies [4] show that the higher scene heterogeneity
leads to non-Gaussian polarimetric clutter modelling, especially
for urban areas.

This paper presented a new estimation scheme for deriving
normalized coherency matrices and the resulting estimated span
with high resolution POLSAR images. The proposed Fixed Point
estimator is independent on the span Probability Density Func-
tion (PDF) and represents an approximate ML estimator for a
large class of stochastic processes obeying the SIRV model.
Here, we propose to use the Fisher PDF to model the esti-
mated texture parameter. For a Fisher distributed texture, au-
thors prove that the target scattering vector k follows a Kum-
merU PDF. For SIRV clutter, a new approximate ML distance

measure is introduced for unsupervised POLSAR classifica-
tion. The effectiveness of the proposed estimation/segmentation
scheme is illustrated by very high resolution X-band POLSAR
data.

2 SIRV model

2.1 Definition
With the new generation of airborne and spaceborne SAR

sensors, the number of scatterers present in each resolution cell
decreases considerably, homogeneous hypothesis of the Pol-
SAR clutter can be reconsidered. Heterogeneous clutter models
have therefore recently been studied.

In 1973, Kung Yao has first introduced the use of SIRV and
their applications to estimation and detection in communica-
tion [10]. From a PolSAR point of view, the target vector k is
defined as the product of a square root of a positive random
variable τ (representing the texture) with an independent com-
plex Gaussian vector z with zero mean and covariance matrix
[M ] = E{zzH} (representing the speckle) :

k =
√
τ z (1)

where the superscript H denotes the complex conjugate trans-
position and E{·} the mathematical expectation.



For a given covariance matrix [M ], the ML estimator of the
texture parameter τ is given by :

τ̂i =
kH

i [M ]−1ki

p
. (2)

where p is the dimension of the target scattering vector k (p =
3 for the reciprocal case).

The ML estimator of the normalized covariance matrix under
the deterministic texture case is the solution of the following
recursive equation :

[M̂ ]FP = f([M̂ ]FP ) =
p

N

N∑
i=1

kikH
i

kH
i [M̂ ]−1

FP ki

. (3)

Pascal et al. have established the existence and the uniqueness,
up to a scalar factor, of the Fixed Point estimator of the nor-
malized covariance matrix, as well as the convergence of the
recursive algorithm whatever the initialization [7] [8]. In this
paper, the trace of the covariance matrix is normalized to p the
dimension of target scattering vector.

It is important to notice that in the SIRV definition, the PDF
of the texture random variable is not explicitly specified. As a
consequence, SIRVs describe a whole class of stochastic pro-
cesses. This class includes the conventional clutter models ha-
ving Gaussian, K-distributed, Rayleigh or Weibull PDFs.

2.2 Texture modeling
2.2.1 Definition

The texture parameter τ is the random power of the clutter,
it characterizes the randomness induced by variations in the
radar backscattering over different polarization channels. This
texture parameter can be rewritten as the product of a normali-
zed texture parameter ξ with the mean backscattered power µ
by :

τ = µ ξ (4)

For a segment S containing N pixels, the normalized texture
parameter for pixel i is defined by :

ξi =
τi
µ

=
τi

1
N

N∑
j=1

τj

=
kH

i [M ]−1ki

1
N

N∑
j=1

kH
j [M ]−1kj

(5)

A common assumption is to considered τ and µ as two chi-
squared random variable with respectively ν1 and ν2 degrees of
freedom. Hence, if τ and µ are independent, ξ follows a Beta
Prime distribution with ν1 and ν2 parameters. In practice, τ
and µ are not independent, but it is reasonable to assume that ξ
follows a Beta Prime distribution with other parameters (L and
M).

2.2.2 Beta Prime PDF

Let ξ be a positive random variable distributed according to
a Beta Prime distribution. Its PDF is defined by two parameters
L andM as :

BP [ξ|L,M] =
Γ(L+M)
Γ(L)Γ(M)

ξL−1

(1 + ξ)L+M (6)

FIG. 1 – κ2/κ3 plan for an urban area over the Oberpfaffenho-
fen test-site (ESAR, L-band).

If ξ follows a Beta Prime PDF with L and M parameters,

the texture parameter τ is Fisher distributed with m =
µL
M

, L
andM parameters.

2.2.3 Fisher PDF

The Fisher distribution is the Pearson type VI distribution. Its
PDF is defined by three parameters m, L > 0 andM > 0 as
the Mellin convolution of a Gamma PDF by an Inverse Gamma
PDF by [6] :

F [τ |m,L,M] = G [m,L] ?̂ GI [1,M]

=
Γ(L+M)
Γ(L)Γ(M)

L
Mm

(
Lτ
Mm

)L−1

(
1 +

Lτ
Mm

)L+M

(7)

2.2.4 Benefit of Fisher PDF

An urban area (80× 35 pixels) from the L-band ESAR data
over the Oberpfaffenhofen test-site has been extracted. Then,
the covariance matrix [M ]FP and the texture parameter τ are
estimated according to Eq.2 and Eq. 3. To see the benefit of Fi-
sher PDF to model PolSAR clutter, the κ2/κ3 plan has been
plotted on Fig. 1. It shows the evolution of the second log-
cumulant versus the third log-cumulant. In this plan, Gamma
and Inverse Gamma PDF are respectively represented by the
blue and red line. Fisher PDF cover all the space between the
blue and red line.

This example shows that Fisher PDF are well adapted to mo-
del high resolution PolSAR clutter.

2.3 Target scattering PDF for a Fisher distribu-
ted clutter

The PDF of the target scattering vector can be expressed with
the density generator function hp

(
kH [M ]−1k

)
by [3] :

pk(k|[M ],L,M,m) =
1

πp|[M ]|
hp

(
kH [M ]−1k

)
(8)



where, for a Fisher distributed clutter, the density generator
function hp (·) is defined by [1] :

hp

(
kH [M ]−1k

)
=

Γ(L+M)
Γ(L)Γ(M)

(
L
Mm

)p

Γ(p+M)U (a; b; z)

(9)

with a = p+M, b = 1 + p− L and z =
L
Mm

kH [M ]−1k.

| · | and U (·; ·; ·) denotes respectively the determinant ope-
rator and the confluent hypergeometric function of the second
kind (KummerU). This PDF has been named the KummerU
PDF.

2.4 Maximum Likelihood (ML) estimator
If the density generator function can be mathematically es-

tablished, the exact ML estimator of the normalized covariance
matrix is the solution of the following recursive equation :

[M̂ML] =
1
N

N∑
i=1

hp+1

(
kH

i [M̂ML]
−1

ki

)
hp

(
kH

i [M̂ML]
−1

ki

) kikH
i (10)

Chitour and Pascal have proved that Eq. 10 admits a unique so-
lution and that its corresponding iterative algorithm converges
to the Fixed Point solution for every admissible initial condi-
tion [2]. In practice, the algorithm is initialized with the identity
matrix [Ip].

For a Fisher distributed clutter, the density generator func-
tion has been obtained in Eq. 9. The exact ML estimator of the
normalized covariance matrix exists. One can replace the den-
sity generator function by its expression in Eq. 10. It yields :

[M̂ML] =
p+M
N

„
L
Mm

«

×
NX

i=1

U

„
p+ 1 +M; 2 + p− L;

L
Mm

kH
i [M̂ML]

−1
ki

«
U

„
p+M; 1 + p− L;

L
Mm

kH
i [M̂ML]

−1
ki

« kik
H
i

(11)

3 Optimal GLRT segmentation
In this section, we propose to implement the SIRV estima-

tion scheme and the KummerU PDF presented in section 2 to
segment PolSAR data. This segmentation is based on the Ge-
neralized Likelihood Ratio Test formalism.

3.1 Multiple composite hypothesis test
We consider the POLSAR segmentation as the following

multiple composite hypothesis test :8>>><>>>:
H0 : k =

√
τz, with τ ∼ F [m,L,M] and z ∼ N [0, [M ]]

H1 : k =
√
τz, with τ ∼ F [m1,L1,M1] and z ∼ N [0, [M1]]

...
HC : k =

√
τz, with τ ∼ F [mC,LC ,MC ] and z ∼ N [0, [MC ]]

(12)

where C is the number of segments. m, L and M are the Fi-
sher parameters and [M ] is the normalized covariance matrix of
the observed independent identically distributed N secondary
data. Notice that the segmentation in C segments is equivalent
to testing C + 1 hypotheses.

In this paper we suppose that the multiple hypotheses from
Eq. 12 are not nested, i.e. there is a unique set of parameters
(m, L,M and [M ]) characterizing each class. This implies that
each class is described by a different SIRV, and hence the ex-
tended GLRT can be applied.

3.2 GLRT similarity measure
In multiple composite hypothesis test, the likelihood ratios

are sufficient for optimal segmentation problem. The use of li-
kelihood ratios referenced to a ”dummy” hypothesis has been
introduced in [9]. In consequence, the secondary data obser-
ved at instance t + 1 are assigned to the segment ω, which
maximizes the extended GLRT over all classes characterized
by their normalized covariance matrices and Fisher parameters
estimated at instance t :

ω = Argmax
1≤i≤C

Λi = Argmax
1≤i≤C

pk(k1, . . . ,kN |Hi)
pk(k1, . . . ,kN |H0)

= Argmax
1≤i≤C

N∏
a=1

pk(ka|Hi)

N∏
b=1

pk(kb|H0)
(13)

where pk(k1, . . . ,kN |Hi) is the PDF under theHi hypothesis.
By taking the natural logarithm of Eq. 13, one can prove that,

for a Fisher distributed clutter, Eq. 13 is equivalent to :

ω= Argmin
1≤i≤C

ln

 
|[M̂i]ML|
|[M̂ ]ML|

!
+ ln

 
Γ(L̂i)Γ(M̂i)

Γ(L̂i + M̂i)

!

+ ln

 
Γ(L̂+ M̂)

Γ(L̂)Γ(M̂)

!
+ p ln

 
L̂
M̂m̂

M̂im̂i

L̂i

!
+ ln

 
Γ(p+ M̂)

Γ(p+ M̂i)

!

− 1

N

NX
a=1

ln

(
U

 
p+ M̂i; 1 + p− L̂i;

L̂i

M̂im̂i

kH
a [Mi]

−1
MLka

!)

+
1

N

NX
b=1

ln

(
U

 
p+ M̂; 1 + p− L̂;

L̂
M̂m̂

kH
b [M̂ ]−1

MLkb

!)
(14)

where L̂i, M̂i, m̂i and [M̂i]ML at instance t are respectively
the ML estimates of Li,Mi, mi and [Mi]ML for the segment
i at instance t− 1 (Eq. 10).

4 Segmentation results

4.1 On synthetic data
To construct the data-set, four 100 × 100 Gaussian realiza-

tions (speckle) are generated. Then, the speckle is multiplied
with a texture image containing Fisher realizations. The same
Fisher PDF is used in the whole image. Fig. 2(a) shows a co-
lored composition in the Pauli basis of the target scattering



(a) (b) (c)

FIG. 2 – Classification results of a simulated data-set (200×200
pixels) : (a) Colored composition of the target vector [k]1-[k]3-
[k]2, (b) SIRV criterion, (c) KummerU criterion

vector (200 × 200 pixels). Segmentation results based on the
SIRV and KummerU criterion (Eq. 14) are respectively shown
on Fig. 2(b) and Fig. 2(c). To evaluate the performances, the
confusion matrix for the SIRV and KummerU classifier are
computed on Tab. 1.

TAB. 1 – Confusion matrix for the SIRV and KummerU classi-
fier.

97.32 0 2.68 0
0 91.25 8.62 0.13

2.93 5.10 91.97 0
0.04 1.61 2.48 95.87

98.59 1.39 0 0.0213
0.81 92.42 6.77 0

0 3.80 95.95 0.24
0.04 0.90 0.45 98.61

4.2 On very high resolution PolSAR data
Here, the proposed classifier is applied on a very high reso-

lution PolSAR image. This data-set has been acquired by the
X-band RAMSES airborne sensor with a resolution of 0.57m.
Fig. 3(a) shows a colored composition in the Pauli basis of tar-
get scattering vector. Classification results shown on Fig. 3(b),
Fig. 3(c) and 3(d) are respectively done with the Wishart, SIRV
and KummerU criterion. Each algorithms are first initialized
with a partition obtained by the H/α plan. H and α represent
respectively the entropy and the mean scattering angle [5].

5 Conclusion
In this paper, authors have proposed to implement the SIRV

estimation scheme to derive the normalized covariance matrix
and the texture parameter. Based on some statistical considera-
tion, the Beta Prime PDF has been introduced to describe the
normalized texture component, which implies a Fisher distri-
buted texture. Then, this statistical scalar model has been suc-
cessfully validated to characterize high resolution urban clut-
ter. Based on this model, the target scattering vector follows a
KummerU PDF. Next, this PDF has been employed to derive an
optimal segmentation algorithm based on the GLRT formalism.
Results on synthetic and real data have shown that the proposed
algorithm gives the best performances for the segmentation of
high resolution data.
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