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Résumé – Il s’agit d’une mise en application de la méthode d’analyse de séries temporelles non-linéaires EMD (décomposition
modale empirique), et de la transformation de Hilbert-Huang, à des données expérimentales de turbulence, possédant des fluctua-
tions invariantes d’échelle dans la zone inertielle de cascade d’énergie. Nous montrons que la méthode EMD permet de décomposer
une série temporelle turbulente en une somme de modes intrinsèques appartenant aux échelles inertielles. Nous estimons le spectre
de Fourier de chaque mode, et montrons qu’ajouter des modes correspond à remonter en échelles, incluant les basses fréquences
dans la zone inertielle. Cette propriété de filtre peut avoir d’intéressantes applications en modélisation de la turbulence. Nous
montrons aussi que le spectre de Hilbert-Huang est invariant d’échelle, avec une pente différente de la pente classique turbulente
de −5/3.

Abstract – In this paper the Empirical Mode Decomposition (EMD) method and Hilbert-Huang transform are used to analyse
experimental homogeneous turbulence time series. With this method, one can decompose nonlinear time series into a sum of
different modes, each narrow-banded. Here we consider experimental turbulent velocity time series with a large Reynolds number
(Reλ = 720). The Fourier power spectrum reveals a wide inertial range with a classical −5/3 Kolmogorov power-law spectrum.
We show that the EMD method applies very nicely to the turbulent velocity time series, with a dyadic filter bank in the inertial
range. We estimate the Fourier power spectra of each mode, showing that adding more and more modes corresponds to including
lower and lower frequencies. This filtering property can have interesting applications in the field of turbulence modelling. We
estimate the Hilbert-Huang power spectrum of the turbulent time series and show its scaling properties, with an exponent different
from −5/3.

1 Introduction

In this paper the Empirical Mode Decomposition (EMD)
method is used to analyze experimental homogeneous tur-
bulence time series in order to decompose nonlinear time
series into a sum of different modes, each one having cha-
racteristic frequencies [1,2]. Since it was introduced, it has
been successfully applied to many topics in the natural and
applied sciences. It has also been applied to numerically
simulated fractional Gaussian noise (fGn) time series, and
shown to act as a dyadic filter bank [3]. In the same pa-
per, it was shown how to use the hierarchy of modes to
estimate the fGn scaling exponent H.

However, to our knowledge, it has seldom been applied
to fully developed turbulent time series, characterized by a
high Reynolds number, a large scaling range for the fluc-
tuations, and strong intermittency [4]. Here we consider
experimental turbulent velocity time series with a large
Reynolds number. These time series possess multifractal
properties, classically characterized in the turbulence lite-
rature using structure function scaling exponents [4]. We

show in the following that the EMD method applies very
nicely to the turbulent velocity time series, with a dyadic
filter bank in the inertial range.

2 Material and Method

2.1 Material

We consider here a turbulent channel flow database ob-
tained from an active-grid experiment characterized by
the Taylor-based Reynolds number Reλ = 720. The sam-
pling frequency is fs = 40kHz, and a low-pass filtered
at a frequency of 20kHz is applied on the experimen-
tal data. The sampling time is 30 s, and the total num-
ber of data points per channel for each measurement is
1.2 × 106. We used data in the streamwise direction at
position x1/M = 20, where M is the grid size (the mean
velocity at this location is 12m/s). For details about the
experiment and the data see [6] ; the data can be found at
http ://www.me.jhu.edu/˜meneveau /datasets.html.
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2.2 Empirical Mode Decomposition

Empirical Mode Decomposition is a recently developed
method [1, 2] that can be applied to study the nonlinear
and non-stationary properties of a time series. This me-
thod contains the following two steps : Empirical Mode
Decomposition (EMD) and Hilbert Spectra Analysis (HSA).
The main idea of EMD is to locally estimate a signal as a
sum of a local trend and a local detail : the local trend is a
low frequency part, and the local detail a high frequency.
When this is done for all the oscillations composing a si-
gnal, the high frequency part is called an Intrinsic Mode
Function (IMF) and the low frequency part is called the
residual. The procedure is then applied again to the resi-
dual, considered as a new times series, extracting a new
IMF and a new residual. At the end of the decomposition
process, the EMD method expresses a time series x(t) as
the sum of a finite number of IMFs Ci(t) and a final re-
sidual rn(t) [1, 3]. The procedure is precisely described
below.

An IMF is a function that satisfies two conditions : (i)
the difference between the number of local extrema and
the number of zero-crossings must be zero or one ; (ii) the
running mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is
zero. The procedure to decompose a signal into IMFs is
the following [1, 2] :

1 The local extrema of the signal x(t) are identified ;
2 The local maxima are connected together forming an

upper envelope emax(t) , which is obtained by a cu-
bic spline interpolation. The same is done for local
minima, providing a lower envelope emin(t) ;

3 The mean is defined as m1(t) = (emax(t)+emin(t))/2 ;
4 The mean is subtracted from the signal, providing the

local detail h1(t) = x(t) −m1(t) ;
5 The component h1(t) is then examined to check if it

satisfies the conditions to be an IMF. If yes, it is consi-
dered as the first IMF and denoted C1(t) = h1(t). It
is subtracted from the original signal and the first re-
sidual, r1(t) = x(t)−C1(t) is taken as the new series
in step 1. If h1(t) is not an IMF, a procedure called
“sifting process” is applied as many times as needed to
obtain an IMF. In the sifting process, h1(t) is consi-
dered as the new data ; the local extrema are estima-
ted, lower and upper envelopes are formed and their
mean is denotedm11(t). This mean is subtracted from
h1(t), providing h11(t) = h1(t) − m11(t). Then it is
checked if h11(t) is an IMF. If not, the sifting process
is repeated, until the component h1k(t) satisfies the
IMF conditions. Then the first IMF is C1(t) = h1k(t)
and the residual r1(t) = x(t) − C1(t) is taken as the
new series in step 1.

By construction, the number of extrema decreases when
going from one residual to the next ; the above algorithm
ends when the residual has only one extrema, or is constant,
and in this case no more IMF can be extracted. The com-
plete decomposition is then achieved in a finite number
of steps, of the order n ≤ log2N , for N data points. The

signal x(t) is finally written as :

x(t) =
N∑

i=1

Ci(t) + rn(t) (1)

The IMFs are orthogonal, or almost orthogonal functions
(mutually uncorrelated). This method does not require
stationarity of the data and is especially suitable for nons-
tationary and nonlinear time series analysis [1, 2]. Each
mode is localized in frequency space [7,8]. This decompo-
sition can be used to express the original time series as the
sum of a trend (sum of modes from p toN) and small-scale
fluctuations (sum of modes from 1 to p − 1), where p is
an index whose value depends on the trend decomposition
which is desired.

EMD is a time-frequency analysis [3]. It can represent
the original signal in a energy-frequency-time form at lo-
cal level, using a complementary method called Hilbert-
Huang spectrum [1], which is not detailed here. We only
mention the fact that the local energy spectrum (called
Hilbert-Huang spectrum) can be estimated at time t with
the introduction of an instantaneous frequency ω :

h(ω) =
∫
H(ω, t) dt (2)

in some sense this is comparable to the power spectrum in
Fourier analysis [1]. In fact, here the definition of instanta-
neous frequency is different with the one in Fourier frame
and the interpretation and detailed physical meaning of
h(ω) is still to be fully characterized.

3 Results

The original velocity time series is divided into 73 seg-
ments (without overlapping) of 214 points each. After de-
composition, the original velocity series is decomposed
into several IMFs, each one having a different mean fre-
quency, which is estimated by considering the (energy
weighted) mean frequency in the Fourier power spectrum
of each mode. The relation between mode number k and
mean frequency [1] is displayed in Fig. 1. The straight line
in log-linear plot which is obtained suggests the following
relation :

f(k) = f0ρ
−k (3)

where f is the mean frequency, f0 is a constant and ρ is
very close to 2. This indicates that EMD acts as a dyadic
filter bank in the frequency domain also for homogeneous
turbulence, as was shown previously using stochastic simu-
lations of Gaussian noise or fractional Gaussian noise [3,8].

When compared with the original Fourier spectrum of
the turbulent time series (see Fig.2 and 3), these modes
can be denoted as follows :

– the first mode, which has smallest time scale, corres-
ponds to the measurement noise ;

– modes 2 and 3 are associated to the dissipation range
of turbulence, for which a departure from the −5/3
power-law spectrum is visible [4] ;

– mode 4 corresponds to the smallest scale in the iner-
tial range (the −5/3 scaling range) which is called the
Kolmogorov scale ;
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– modes 5 to 11 all belong to the inertial range ;
– larger modes belong to the large turbulent forcing

scales.
This approach is thus very interesting to characterize the
turbulent cascade of energy flux from large to smaller
scales, which is a characteristic feature of fully developed
turbulence.

Fig. 2 and 3 represent the Fourier power spectra of each
mode and of the sum of the modes, respectively. They
show (i) that each mode in the inertial range is narrow-
banded ; (ii) that adding more and more modes corres-
ponds to going farther and farther towards large scales
in the inertial range, reconstituting the −5/3 Kolmogo-
rov spectrum. This property can be very interesting to
decompose a turbulent signal into a mean and small-scale
fluctuations, as is often done for turbulence modelling pur-
poses.

The Hilbert marginal spectrum h(ω) [1] of the velocity
is displayed in Fig. 4 together with the Fourier spectrum.
It is clear that the following relation

h(ω) ∼ ω−βH(ω) (4)

holds in some range, with an exponent βH ≈ 2 different
from the −5/3 Fourier exponent. We recall here that the
frequency ω defined in EMD is different from the Fou-
rier frequency. Here instantaneous frequency is used to re-
present the relation between time, frequency and energy.
The precise physical meaning of Hilbert marginal spec-
trum is still to be explored, and the value of βH to be
interpreted, e.g. through dimensional analysis arguments
as can be done for the value −5/3 in Fourier space. In the
equation above, it was written as βH(ω) to express the
fact that the local slope seems to slightly depend on the
frequency.

Finally, we know that the intermittency property of tur-
bulent fluctuations, which is often characterized in the
inertial range in a scale-invariant framework involving mul-
tifractal models and scaling moment functions, is one most
important property of turbulence. Turbulent fluctuations
are classically studied using structure functions, corres-
ponding to study the statistical moments of local incre-
ments |U(t+ τ) − U(t)|, where U is the streamwise com-
ponent of the velocity time series. Here we propose to
consider the intermittency properties of each mode : this
corresponds to consider the intermittency properties of the
mode decomposition, instead of considering it using struc-
ture function decomposition. moments to characterize the
intermittency of those modes. The results are shown in
Fig. 5, indicating that the following behaviour seems to
hold :

〈|CK(t)|q〉 = ψ(q)k + b(q) (5)

where ψ(q) is the slope of those modes’ statistical moments
in the inertial subrange. ψ(q) and b(q) will be precisely
estimated and interpreted in future studies.

Fig. 1 – The relation between modes and mean fre-
quency [1]. The slope is very close to 1, which indicates
that EMD acts as a dyadic filter bank.

Fig. 2 – Fourier spectrum of each mode showing that they
are narrow-banded (from 1 to 12). The slope of the refe-
rence line is −5/3.

4 Conclusion

In present paper, we apply Empirical Mode Decompo-
sition to analyze a high Reynolds number, Reλ = 720,
turbulence experiment time series. After decomposition,
the original velocity time series is separated into several
intrinsic modes. It is found that this method acts as a
dyadic filter bank in frequency domain (in Fourier frame).
Comparing the Fourier spectrum of each mode, we can
draw that the first mode contains the smallest scale and
the most noise of the measurement, and several modes
are associated to the inertial subrange. Finally, when the
Fourier spectrum of each mode is compared with the ori-
ginal ones, these modes can be divided into three terms :
the smallest scales corresponding to the dissipation range,
the moderate scales corresponding to the inertial subrange
and the large scales corresponding to the coherent struc-
tures (energy-contain structures). When all these modes
are added step by step, it illustrates a clearly asympto-
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Fig. 3 – Fourier spectrum of the sum of modes, 1 to p,
with p = 2, 3...12. It shows a clear asymptotic behavior.
The slope of reference line is −5/3.

Fig. 4 – Hilbert Marginal Spectrum of Velocity U . For
comparison Fourier spectrum is displayed in the up-right
pannel. It may suggest an approximate (or generalized)
power-law.

tic approximation behavior. This can be very useful for
turbulence modeling : some model parameters may be ad-
justed based on these results. This provides also a possible
way to establish a low dimensional dynamical system mo-
delling [9].

The Hilbert marginal spectrum displayed an approxi-
mate power-law, which is different with the Fourier spec-
trum −5/3. We also considered high order statistical mo-
ments to measure the intermittency for each mode ; this
could provide a new way to characterize the scale-dependence
of turbulent intermittency.

Fig. 5 – The statistical moments of order q of each IMF,
〈|Ck|q〉.

Références

[1] Huang N.E., et al.. The empirical mode decomposi-
tion and the Hilbert spectrum for nonlinear and non-
stationary time series analysis. Proc. R. Soc. London.
A 454, p. 903-95, 1998.

[2] Huang N.E., Shen Z. and Long S.R.. A new view of
nonlinear water waves : the Hilbert spectrum. Ann.
Rev. Fluid Mech 31, p. 417-37, 1999.

[3] Flandrin, P., Rilling, G. and Gonçalvès, P., 2004. Em-
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