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Résumé – Nous étudions une approximation quadratique du Critère de Vraisemblance Généralisé (GLRT) pour pouvoir décoder efficacement
une certaine classe de codes espace-temps unitaires pour le canal MIMO à évanouissement par bloc. L’approximation quadratique est dérivée à
partir de la série de Taylor de la métrique du GLRT tronqué au deuxième ordre. Une expression analytique du récepteur GLRT approximé est
ainsi derivée. Ses performances et les pertes par rapport au cas sans approximation sont illustrées à travers des simulations.

Abstract – We provide a quadratic approximation of the Generalized Likelihood Ratio Test (GLRT) in order to decode efficiently a certain
class of unitary space-time codes for the noncoherent MIMO block fading channel. This quadratic approximation is derived from the Taylor
series expansion of the GLRT truncated at the second order. A closed form expression of the approximate GLRT receiver in the MIMO case is
derived and its performance loss is assessed through some preliminary simulation results.

1 Introduction

Recently, many contributions on constellation design for narrow-
band noncoherent Multiple Input Multiple Output (MIMO) block
fading channels have been proposed in order to exploit their
promising diversity and capacity gains. It has been shown that
the problem of designing good constellations can be restated as
finding optimal packings ofM -dimensional subspaces ofCT

(T > M ), i.e. packings over the GrassmannianGT,M , where
T is the coherence time of the channel andM it the number of
transmit antennas [9].

Here we will focus on the proposal in [6]: starting from a
constellationB carved from a lattice, and by applying to it
the so-called exponential map, a constellationC ∈ GT,M is

obtained: B ∈ B
exp
−−→ X ∈ C. The elementsB ∈ B are

(T −M)×M complex matrices; the elementsX ∈ C areT ×
M complex matrices with unitary orthonormal columns which
represent the basis of the corresponding subspaces. While this
is an efficient method to generate dense constellations over the
Grassmannian, in generalC does not have any apparent struc-
ture to be exploited for efficient decoding. However,B has a
lattice structure by construction: its algebraic properties can
be of use, if we manage to restate the decoding problem inB.
Due to the non-linearity of the exponential map, the decoding
metric has in general a complicated expression as a function of
B. The idea is then to obtain a local quadratic approximation of
the decoding rule, thanks to a Taylor expansion of the decoding
metric as a function ofB truncated at the second order.

In this contribution, we generalize to the MIMO case the pre-
vious idea, already carried out in the SISO case (one transmit
and one receive antenna) in [2]. We derive a local quadratic ap-
proximation of the Generalized Likelihood Ratio Test (GLRT)
for systems with equal numberM > 1 of transmit and receive

antennas adopting the coding scheme proposed in [6]. We will
provide also some performance curve in the caseM = 2 in
order to estimate the performance loss of the approximated de-
coding rule with respect to the standard one.

2 System Model

Encoder. Let B be a generic(T −M) ×M complex matrix.
The exponential map has the following closed form expression
[3]

[X X⊥] = eA = exp(A) = exp

([
0 −B†

B 0

])
, (1)

whereX, X⊥ are respectivelyT×M andT×(T−M) complex
matrices with unitary orthonormal columns, the one being the
orthogonal complement of the other:X†X⊥ = 0M,T−M . Let
B = VΘU† be the thin singular value decomposition (SVD)
of B, whereU is M ×M and unitary,V is (T −M) ×M
and has orthonormal columns,Θ is diagonal and collects the
M singular values. The Cosine-Sine (CS) form of (1) is [3]

X =

[
UCU†

VSU†

]
, X⊥ =

[
USV†

VCV† + V⊥(V⊥)†

]
(2)

whereC = cos(Θ), S = sin(Θ) andV⊥ is any orthogonal
complement ofV. In order to inverse the exponential map,
the following condition on the singular values of the matrices
B ∈ B must be satisfied [3]

max
m=1,...,M

θm (Bi) <
π

2
, ∀Bi ∈ B (3)

whereθm (Bi) is them-th singular value ofBi. The procedure
to obtain the matrixB = exp−1(X) is described in [3]. Given
a generic codeB, if conditions (3) are not satisfied, a new code
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is constructed with scaled codewordsαBi, for all i. The com-
mon positive scalarα is calledhomothetic factor and modifies
only the singular values ofαBi, which becomeαΘi. The ho-
mothetic factor value is chosen to satisfy the inequalities (3)
and to optimize the performance of the code, at the same time.

In the following we suppose thatB belongs to a constel-
lation B carved from a latticeΛ. The matricesX belong to
the corresponding Grassmann codeC, generated fromB via
the exponential map. In fact, thesent codewords areX ∈ C.
However, the same Grassmann code can be equivalently de-
scribed also by the setC⊥ of the matricesX⊥ = eA J with
J = [0T−M,M IT−M ]t, or by the setCe of the matriceseA.
In this work,(·)t stands for simple transposition, while(·)† de-
notes transposition and conjugation.

Channel model. The codewordX ∈ C is transmitted through
an narrow-band block-fading Rayleigh MIMO channel corrupted
by an additive white Gaussian noise (AWGN).T is the length
in symbol periods of the coherence length of the channel. The
transmitter is equipped withM antennas and the receiver with
N antennas: in the following we focus on the caseN = M .
The received complex signal can be written as

Y
T×M

= X
T×M

H
M×M

+ W
T×M

,

where each entry of the channelhk,m is a i.i.d. circularly sym-
metric Gaussian random variableCN (0, 1), whose value is un-
known to the transmitter and to the receiver. The entries of the
noise matrix are i.i.d. random variableswk,m ∼ CN (0, σ2

w).
Decoder metric. The receiver use a Generalized Likelihood

Ratio Test (GLRT) in order to detect the sent matrix symbol.
The GLRT can be expressed in many different but equivalent
ways, we use the following one

min
X⊥∈C⊥

‖Y†X⊥‖2F = min
eA∈Ce

‖(Jt ⊗Y†) vec(eA)‖2 , (4)

where‖ · ‖F is the matrix Frobenius norm, andvec(·) is the
operator which concatenates in a unique column vector the
columns of the input matrix. The last expression in (4) is ob-
tained by applying the indentityvec(M1M2M3) = (Mt

3 ⊗
M1)vec(M2), whereMi are generic complex matrices and⊗
is the Kronecker matrix product. The matrices in (4) can be ex-

pressed also in real form:vec(Ŷ†X̂⊥) = (Ĵt ⊗ Ŷ†) vec(eA),
where(̂·) is the operator which gives the real form1 of any com-
plex matrix or vector.

3 Approximation of the GLRT metric

Let us definêx = vec(eA) ∈ Ĉe, whereĈe is exactly equivalent
to Ce but with matrices expressed in real form. Let us define

alsoP = Ĵt ⊗ Ŷ† = Ĵt ⊗ Ŷt. It is clear that the GLRT
metricq = ‖P x̂‖2 is a quadratic function of̂x but a non-linear

1We use the following definition, for any matrixA or vectora:

Â =
Re(A) −Im(A)
Im(A) Re(A)

, â =
Re(a)
Im(a)

.

Re(·) andIm(·) are respectively the real and imaginary part. The expression

eA = e
Â is true, just apply the standard properties of the operator to the series

expansion ofeA. We express the GLRT metric as a function of real vectors and
matrices because results on differentials of real matrices are more widespread
in the literature.

function ofb̂ = v̂ec(B) ∈ B̂ due to the exponential map:

q(b̂) = x̂(b̂)tPt P x̂(b̂) = x̂(b̂)tQx̂(b̂) . (5)

Unfortunately,Ĉe has not in general any apparent structure to
be efficiently decoded. On the contrary, the corresponding code
B̂ has a lattice structure by construction. Hence we can use
efficient algorithms to solve closest-point problems (i.e. mini-
mization of a quadratic function) [1]. Following [2], we derive
a quadratic approximation of the GLRT metricq(b̂) as a func-
tion of b̂, by using its Taylor series truncated at the second
order and evaluated in a generic pointb̂0:

q(b̂) ≈ q(b̂0) + D
b̂
[q](b̂0)(b̂− b̂0) (6)

+
1

2
(b̂− b̂0)

t D2
b̂2

[q](b̂0) (b̂− b̂0) (7)

whereD
b̂
[q](b̂0) andD2

b̂2
[q](b̂0) are respectively the first and

second differential of the functionq(b̂) calculated inb̂0. Ap-
proximation in (6) and (7) is reasonably precise only in a neigh-
borhood of the point̂b0, in this sense it is just alocal approxi-
mation of the GLRT metric.

The pointb̂0 is obtained from the received signalY: putY
in CS form (2) and call itX0 (see [3] for a procedure to do

that). Thenb̂0 = ̂vec(B0), with B0 = exp−1(X0). It holds
true that

Qx̂(b̂0) = Qx̂0 = 0 , q(b̂0) = 0 (8)

since evaluating these expressions comes to calculatingY†X⊥
0 =

0M,T−M by construction of̂b0.
The first differential in (6) is

D
b̂
[q](b̂0) =

d q

d x̂
(b̂0)Db̂

[x̂](b̂0) = 2x̂t
0 QD

b̂
[x̂](b̂0) = 0 .

(9)
where the results are obtained from the differential of symmet-
ric matrices in [7] and introducing (8). Let us defineD0 =
D

b̂
[x̂](b̂0) the first differential ofx̂ as a function of̂b eval-

uated inb̂0. The second differential ofq as a function of̂b
calculated in̂b0 is [3]

D2
b̂2

[q](b̂0) = 2Dt
0 QD0 + 2

(
I4T 2 ⊗ (x̂t

0Q)
)(d2 x̂

d b̂2
(b̂0)

)
︸ ︷︷ ︸

=0

(10)
where the simplification comes again from (8). Hence, only
D0 is needed, and it is derived by applying formulas in [7]
and [8] to our case. By lettinĝa = vec(Â) and â0, Â0 the
corresponding quantities evaluated inb̂0, it can be shown that
the differential takes the following form

D0 =

(
eK(Ât

0
) − I4T 2

K(Ât
0)

)t

(I2T ⊗ eÂ0)Z . (11)

whereK(Â0) = Ât
0 ⊕ (−Â0) = (Ât

0 ⊗ I2T ) − (I2T ⊗ Â0).
The(4T 2)× 2M(T −M) real matrixZ is defined as follows:
let k = 1, . . . , T −M and� = 1, . . . , M , its firstM(T −M)
columns are

zk+(T−M)(�−1) = eM+k+2T (�−1) − e�+2T (M+k−1)

+ eT+M+k+2T (T+�−1) − eT+�+2T (T+M+k−1)
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and the otherM(T −M) columns are

zk+(T−M)(M+�−1) = eT+M+k+2T (�−1) − e�+2T (T+M+k−1)

+ eT+�+2T (M+k−1) − eM+k+2T (T+�−1)

whereei is the zero column vector of length4T 2 with a one at
thei-th entry. It can be shown that expression ofD0 in (11) is
always well-defined and it can be calculated efficiently.

4 The Simplified Receiver

The expression of the approximate GLRT decoder is

min
b̂∈B̂

‖PD0(b̂− b̂0)‖
2 = min

b̂∈B̂

(b̂− b̂0)
tQ̃(b̂− b̂0) , (12)

with D0 in (11). The received signal can be always written in
the formY = X0He, whereX0 is in CS formHe is a sort of
channel estimate (if no additive noise is present, thenHe = H

is the true channel realization andX0 is the sent codeword).
It can be shown that (the derivation is omitted due to lack of
space)

PD0 = (Ĵt ⊗ Ĥe

t
ÎT,M

t
)P2Z = P1P2Z (13)

whereIt
T,M = [IM 0T−M,M ]. The matrixP1 contains ex-

plicitly the channel estimate,Z is a constant matrix andP2 is
a full rank real square matrix which describes the influence of
differential of the matrix exponential. In the next subsection
we will study in more detail the square symmetric matrix of
the quadratic form̃Q = ZtPt

2P
t
1P1P2Z.

4.1 The structure of the matrix Q̃

It is possible to show that the eigenvaluesλk(Pt
2P2) of Pt

2P2

are closely related to the singular valuesθm,0 = θm(B0), m =
1, . . . , M of B0 (here we deal with the caseT = 2M ):

λk(Pt
2P2) = 2

1− cos[α(θm,0 ± θn,0)]

α2(θm,0 ± θn,0)
, m, n = 1, . . . , M

(14)
where we have also shown the homothetic factorα. Since the
function2(1−cos(x))/x2 for x ∈ [0, π] is decreasing from 1 to
4/π2, we have that λmax,2 = max{λk(Pt

2P2)} = 1 (obtained
whenθm,0 = θn,0) andλmin,2 = min{λk(Pt

2P2)} = 2(1 −
cos(αδmax))/(αδmax)2 (obtained forδmax = max

m,n
{θm,0 +

θn,0}).
By applying the Ostrowski’s theorem [4, pag. 224], bounds

on the eigenvalues of̃Q can be found. In particular

λk(Pt
2P

t
1P1P2) = akλk(Pt

1P1) , λmin,2 ≤ ak ≤ 1 (15)

where the only non-zero eigenvalues ofPt
1P1 are in fact the

eigenvalues of̂HeĤe

t
(see definition ofP1 in (13)). Finally,

by completing with zeros the matrixZ to a square matrixZ1 =
[Z 0], and by noticing thatZtZ = 4I2(T−M)M , we have that
max{λk(Zt

1Z1)} = 4 andmin{λk(Zt
1Z1)} = 0. By applying

again the Ostrowski’s theorem, and combining with (15), the
following bound holds for the non-zero eigenvalues ofQ̃

λk(Q̃) = akckλ(ĤeĤe

t
)

λmin,2 ≤ ak ≤ 1
0 ≤ ck ≤ 4

. (16)

With respect to a coherent system, the structure of the ma-
trix Q̃ is quite different. Let us suppose that there is no ad-
ditive noise in the channel. In a coherent system, the chan-
nel estimation would be perfect in this case andQ̃ depends
exclusively onĤĤt. On the other hand, in our noncoher-
ent system, even if̂He = Ĥ when no noise is present, the
eigenvalues of̃Q are influenced also by the geometry of the
code and by the approximation. This is apparent in (15) and
in (16), where the coefficientsak and ck have possibly van-
ishing lower bound. The lower boundλmin,2 overak is non-
vanishing because4/π2 < λmin,2 < 1 for all codes and all
homothetic factors. Still the coefficientsak attenuate the value
of the eigenvalues of̃Q with respect to the ones of̂HĤt. In
general, the higher the homothetic factor, the smaller the lower
boundλmin,2. The coefficientsck have 0 has lower bound and
possibly contribute to a further reduction of the eigenvalues of
Q̃.

The previous remarks, and the fact that the statistics ofB0

are different from the ones of the received signalY due to the
exponential map non-linearity, let us conclude that the Packet
Error Rate (PER) performace of the approximate GLRT will
not follow the same law of the one of the GLRT without ap-
proximation.

4.2 Simulations

Here we present some simulation results in the caseT = 4,
M = 2. We use two coherent codesB1 andB2, built as follows

B1 
 B =
1
√

2

[
s1 + φs2 ϑ(s3 + φs4)

ϑ(s3 − φs4) s1 − φs2

]
with ϑ2 = φ = eiπ/4 and

B2 
 B =
1
√

5

[
φr(s1 + rs2) φr(s3 + rs4)
iφ̄r(s3 − r̄s4) φ̄r(s1 + r̄s2)

]
wherer = (1 +

√
5)/2, r̄ = (1 −

√
5)/2, φr = 1 + i(1 − r)

andφ̄r = 1+ i(1− r̄) (see [3] for more details on these codes).
The symbolss1, s4, s3, s4 are selected from a 4-QAM or a 8-
QAM alphabeth with unitary energy. Starting fromB1, B2 we
obtain the Grassmann codesC1, C2 (sk ∈ 4-QAM) or C3, C4
(sk ∈ 8-QAM). These Grassmann codes and their perfomance
depend also on the choice of the homothetic factorα.

In Fig. 1 we present the performace (in PER versus the aver-
age SNR per received antenna and per symbolX) for the codes
C1 andC2 obtained with different homothetic factors. The high-
estα for each code represent the optimal homothetic factor for
that code in the sense that it minimizes the PER performance
of the GLRT receiver. In fact, the optimalα guarantees a high
minimum distance of the noncoherent code. However, in this
case the approximate GLRT decoder is not at all close to the
optimal GLRT performance. This is due to the statistics of
the proposed receiver (12), which are different from the one
of the GLRT. Hence, even if the approximation works and no
performance floor is present, the diversity of the system is not
recovered yet.

When the homothetic factor decreases, the distance between
codewords decreases as well, and the GLRT performance de-
grades. The approximate GLRT at low SNR it experience a
noise-limited channel. In this case, it manages to follow the
GLRT performace curve. However, at high SNR, when the
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FIG. 1: GLRT (solid lines) and approximate GLRT (dashed
lines) performance for codesC1 andC2 obtained with different
homothetic factorsα. Spectral efficiency 2 bit/s/Hz.
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FIG. 2: GLRT (solid lines) and approximate GLRT (dashed
lines) performance for codesC3 andC4 obtained with different
homothetic factorsα. Spectral efficiency 3 bit/s/Hz.

noise does no longer dominate, the PER curve of the approxi-
mate GLRT is dictated by the asympotic statistics. Then, a loss
of diversity is observed.

In Fig. 2 we present the performace for codesC3 andC4
with different homothetic factors. Here too, the highestα is
the optimal values to minimize the GLRT performance. The
behaviour of the approximate GLRT is substantially equivalent
to the case of codesC1 andC2, even if here we deal with denser
constellations.

In this paper we do not directly compare our proposition
with other ones, since the aim was to introduce the approxi-
mate GLRT decoder and to do some preliminary investigations
on its property. However, Jing and Hassibi treated a similar
topic was treated [5]. In that work, the authors used another
non-linear map (the Cayley map) to generate unitary constella-
tions, and they do some approximation of the GLRT metric in
order to decode efficiently. It is not easy to understand if the
approximate GLRT receiver in [5] recovers diversity. More-

over, in the caseT = 4, M = N = 2, spectral efficiency equal
to 2 bit/s/Hz, the performance proposed in [5, Fig. 2] is com-
parable to the one obtained in this work (see Fig. 1). However,
the simplified receiver proposed in [5] seems to better approx-
imate the true GLRT receiver, even if the optimization of the
code is more cumbersome than in our proposal. The reason
of the difference in the behaviour of the approximate metric in
the two cases is probably to be searched in the fact that in [5]
the received signal is preserved, while in our proposal part of
it is lost when terms of higher order of the Taylor series are
neglected.

5 Conclusion

In this paper we have presented a derivation and first analy-
sis of an approximate GLRT receiver. This receiver applies to
unitary constellations suited for transmission on noncoherent
MIMO channels, when generated by the exponential map. The
approximate GLRT is obtained by truncating the Taylor series
expansion of the GLRT metric. This approximation enables ef-
ficient decoding of the sent signal, but entails also a loss in the
diversity. Results are provided in some cases and a first qual-
itative comparison with another proposition in the literature is
carried out.
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