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Résumé – Dans cet article nous considérons la classe des méthodes d’identification aveugle multicapteurs du sous espace minimum (MNS).
L’algorithme MNS est une version rapide de l’algorithme sous-espace. Nous développons ici une version dite symétrique de la méthode MNS
(que l’on notera SMNS) qui a l’avantage d’être plus robuste et plus performante que la méthode MNS originale au prix d’une légère augmentation
du coût de calcul. Nous proposons aussi, une implémentation en bloc efficace et rapide de l’algorithme SMNS. Finalement, nous montrons que,
sous certaines hypothèses supplémentaires sur la fonction de transfert du système, il est possible d’aller au-delà du minimum dans le sens où
moins de ����� vecteurs bruit ( � étant le nombre de sorties et � le nombre d’entrées) seraient suffisants pour l’identification du canal.

Abstract – This contribution deals with a particular family of blind system identification methods, referred to as Minimum Noise Subspace
(MNS). MNS method is a computationally fast version of subspace method. Here, we develop a symmetric version of MNS method (referred
to as SMNS) that has the advantage of better robustness and estimation accuracy at the cost of a slight increase of the computational cost in
comparison with original MNS. In the same time, we present and compare different algorithms for the block implementation of the SMNS.
Finally, we show that under certain additional assumptions on the channel transfer functions, we can go beyond the minimum in the sense that
less than ����� ( � being the number of outputs and � the number of inputs) noise vectors are sufficient for unique identification of channel
parameters.

1 Introduction

Blind system identification is important in many fields of ap-
plications and particularly in mobile communication systems.
Recently, the world has seen a great research interest in blind
identification of single-input multi-output (SIMO) and multi-
input multi-output (MIMO) systems using second order statis-
tics (SOS) based methods [1]. The SOS based approach is at-
tractive because it requires much less samples than the tradi-
tional higher order statistic (HOS) based approach.

Among the existing SOS based methods, the subspace (SS)
method shown in [2, 6] appears to be one of the most robust
to noise. One of the important advantages of SS method is its
deterministic property. That is, the channel parameters can be
recovered perfectly in absence of noise, using only a finite set
of data samples, without any statistical assumption over input
data. Therefore, SS method is promising for applications where
only a few number of output data are available, or the input data
is arbitrary.

A major drawback of the SS method is its high computa-
tional cost due to the eigendecomposition of a large dimen-
sional matrix. Recently, a computationally attractive subspace
method called Minimum Noise Subspace (MNS) has been pro-
posed for MIMO system identification [5]. This method com-
putes the noise subspace via a set of noise vectors which are
computed in parallel from a set of combinations of system out-
puts that form a basis of the rational noise subspace.

In this paper, we introduce the concept of Symmetric MNS
(SMNS) method, we study the effective implementation of the
MNS and SMNS and we compare their respective estimation
performances.

2 The MNS method: a review

Let �	��
� be a � -variate discrete-time stationary time-series given
by
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is an unknown causal FIR
�5476 transfer function satisfying Rank � � �1'��8�9�:6 for each '
and Rank � � �1;<�8�=�>6 ( � ��'(� is column reduced [3]), �?��
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is a 6 -dimensional unknown process and $&��
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� -dimensional (spatially and temporally) white noise, i.e.@ ��$&��
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Consider the spatio-temporal variables:
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S R � � N�T q � being the ^r4V��^<#s;<� Sylvester matrix associated
with the scalar polynomial � N�T q �1'�� (see [2]). Let t R be the



covariance matrix of � R ��
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where
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�2� is assumed to be positive defi-

nite. For ^��<6 ; , the noise-free covariance matrix is rank
deficient and its eigen-decomposition is given by:
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where ��������i��� � � ����������i��S R � � �8� is the signal subspace
(as � � is the diagonal matrix of the 6 �1^ #=;<� largest eigenval-
ues of t R ) and ��������i��� 
 �9����������i��S R � � �2��� is the noise
subspace. The following orthogonality relation

� A
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is the keystone of the SS method to identify the transfer func-
tion � ��'(� up to a 6 4 6 constant matrix [6].

The SS method is expensive in computational cost due to
the above subspace decomposition. A major contribution in [5]
is to show that first, only �  6 properly chosen noise vectors
are as sufficient as the whole noise subspace Range ��� 
�� for
(5) to yield a consistent estimate of � �1'�� and, second, under a
mild additional assumption, each of the �	 6 noise vectors can
be found by computing the least eigenvector of a covariance
matrix corresponding to a distinct � 6 # ac� -tuples of channel
outputs given by a properly connected sequence (PCS) defined
as [5]:

Definition 1 Denote the � system outputs by a set of mem-
bers ! g W+\]\+\]W ! K . A combination of 6s#oa ( " � ) members# � �$! N&% W+\]\]\]W ! N('*)+% � is called a � 6�# a � -tuple. A sequence
of �  6 tuples is said to be properly connected if each tuple
in the sequence consists of 6 members shared by its preced-
ing tuples and another member not shared by its preceding
tuples. A properly connected sequence (PCS) is denoted by, � 6 W � �D�.- # g W # I W]\]\+\]W # K 3 j / where#
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3 The SMNS method

The idea of SMNS is to use � noise vectors instead of �  96 as in
the original MNS is such a way that all system outputs are used
identically. Indeed, in the original MNS method, certain sys-
tem outputs are used more than others depending on the cho-
sen PCS. This might lead to poor estimation performances if
the system outputs that are used most correspond to the ‘worst
system channels’. This raises the problem of the ’best’ choice
of PCS. In the SMNS we avoid that problem by choosing the

following sub-systems for the computation of the noise vectors:DEEEEEEEEEEF EEEEEEEEEEG
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(6)

Note that the first �5 %6 tuples correspond to a PCS and the
last 6 tuples correspond to the additional redundancy we intro-
duce to guarantee that all system outputs are used 67# a times
(i.e. we guarantee here a certain symmetry between the system
outputs).

More precisely, the SMNS estimation method proceeds as
follows:K For each tuple of channel outputs �$! N&% W+\]\]\]W ! N('*)+% � , we

compute the covariance matrix:L LONQP � aM  ^ #Fa
e 3 RON g�
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being the sample size and
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Then, we compute its least dominant eigenvector S N .K Let S N � Z S eN % W]\+\]\pW S eN '*)+% d e where each subvector has
the dimension ^o4Ba (i.e., S NT9 � Z S NT9 ����� W+\]\]\]W S NT9 �1^  
a �ld e , for �B� a W]\+\]\pW 65# a ). Then define “zero-padded”
� ^ 4sa vectors
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and form a � ^ 45� matrix k 
 of the � vectors -8S N / , i.e.,k 
 � Z S g W]\]\+\pW SK�d .K Estimate the channel parameter vector:] )]*-,� v lnm^o Z � e g W]\]\+\pW � e K dheqp
where � N � Z � eN ����� W+\]\]\+W � eN �1;<�-d e by minimizing the
least squares criterionr] �s��_J�ut i �wvpS AR ��x �yk 
 v I (9)

under a suitable constraint (see [4] for more details).

4 Efficient implementation

The main advantage of MNS-like methods is that large ma-
trix eigendecomposition is avoided and the noise vectors are
computed in a parallel scheme as the least eigenvectors of co-
variance matrices corresponding to the chosen � 6B# a � -tuples
of system outputs.
Eventhough, computing one single eigenvector costs z5��{9I+� ( {



being the size of considered matrices), we found out that ex-
isting algorithms (e.g., [7, 8]) for extracting minor subspaces
or minor eigenvectors are unefficient and slowly convergent in
comparison with those dedicated to principal subspaces or prin-
cipal eigenvectors. For this reason, we propose here to com-
pute from the beginning the inverse matrices using RLS-type
technique followed by a power method to extract the principal
eigenvectors of each of the considered matrices. Therefore, us-
ing Schur inversion lemma, the first step of SMNS algorithm is
replaced by the following: For

# �<a W]\+\]\pW M  !^o#Fa� N � # � � �
N �
#  :a ��� N � # ��

N �
# � � �

N �
#  :a �  � N � # � � AN � # �a #%� AN �

# � � N � # � (10)

where
�
N represents the inverse matrix of

L LONQP . The initializa-
tion is done by choosing

�
N �����	��� J , � being a small positive

scalar g . The least eigenvector of
L LONQP becomes the principal

eigenvector of
�
N that can be computed using power iterations

according to: For ��� a
$ N ����� � �

N $ N ���  :a �$ N ������� � $ N �1���	��v�$ N �1���8v
where $ N ����� represents the desired eigenvector estimate at the
kth iteration. The initialization vector $ N ���?� is chosen ran-
domly.

To solve equation (9) in the single input case, one can use a
similar RLS+power iteration algorithm applied to the quadratic
form matrix of criterion (9). The latter can be rewritten as:
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However, in the multi-input case, the solution of (9) depends
on the considered constraint and thus it cannot be computed
necessarily as a least eigenvector of a given matrix [4].

5 Discussion

Performance comparison: Comparatively, the SMNS and MNS
have almost the same order of computational cost except if
��� ���  96 � in which case the SMNS becomes computationally
more expensive.�

Note that the eigenvectors of ������� coincide with those of ���������! #" .

Concerning the channel estimation error, we have a signifi-
cant gain in favor of the SMNS that can be explained by the fact
that all system outputs are used equally (which is not the case
in the MNS) and the fact that for a fixed number of sensors � ,
the larger the number of sources is, the smaller is the number
of noise vectors used by the MNS for channel identification.
Eventhough, this is theoretically justified, the estimation per-
formances are affected seriously as the parameter estimation
problem becomes harder and thus requires ‘more efforts’ when
the number of sources increases.

Convergence rate: The average convergence rate of the RLS
+ power iteration method is high (typically 5 to 10 iterations
are sufficient) and overcomes the one of the optimal step size
gradient method in [7]. This has been observed in different
scenarios (see figures 3-5) at low and high SNRs and for single
and multiple (6&� H ) input cases. Also, we have observed that
the average convergence rate remains quite high (see figure 6)
even if the noise subspace dimension is larger than one (this is
the case if we choose ^ � 6�; #Xa ) I .
Beyond the minimum: Note that, under additional assumptions
on the channel transfer functions, one can use less than �  &6
noise vectors (recall that, without additional assumptions, � 6
is the minimum number of noise vectors needed to achieve
unique channel identification). As an example, let consider
the case 6 � a and assume that the channels are such that] N ��'(� and ] q ��'(� are co-prime $ for all 2 @� < . In that case, only% K
I'& # a noise vectors are sufficient for unique channel identi-

fication where
%yC & represents the integer rounding towards plus

infinity. In fact, one can observe that each of the following sys-
tem output pairs: �2a W=H � W � I"W)( � W]\+\]\pW ���  a W � � allows a unique
identification of the corresponding channel polynomials, i.e.,
� ] g �1'�� W ] I ��'(�2� , � ] $ ��'(� W ]+* �1'��8� W+\]\]\]W � ] K 3 g ��'(� W ] K ��'(�2� up to un-
known scalar constants � g W � I W]\+\]\]W �-,/.021 , respectively. To get
rid of these scalar constant indeterminacy, we need to use one
extra relation that links all system outputs together.

6 Performance evaluation

We present here some numerical simulations to assess the per-
formance of our SMNS algorithm. Figure 1 (resp. figure 2)
compares performances of SMNS and MNS methods for 6B� a
(resp. 6_� H ) sources and �B�43 channels of degree ; � H .
Statistics are evaluated over a8��� Monte-Carlo runs with

M �H65 � samples and the channels are generated randomly (follow-
ing a complex gaussian distribution for each channel coeffi-
cient) at each run.

Figures 3-6 show the convergence rate of the RLS+power
iteration method and the optimal step size gradient method in
[7] in different scenarios corresponding to the single input case
with an SNR of 30dB, the single input case with an SNR of
10dB, the 2-input case with an SNR of 30dB, and the single
input case when the noise subspace dimension is strictly larger
than one, respectively. In all these scenarios, one can observe a
relatively high convergence rate of the proposed algorithm.7

Note that the convergence rate of power methods is exponential in terms
of the ratio of the two largest eigenvalues ( 8 7:9 8 � ) of ; � .<

This is a stronger assumption than that used previously where only ‘global’
co-primeness is required, i.e. = �:>�?A@CB = 7A>D?E@CBGF/FGFGB =2H >D?E@ do not share common
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Figure 1: Comparison between MNS and SMNS
for 6B�<a and � ��3 .
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Figure 2: Comparison between MNS and SMNS
for 6B� H and � ��3 .
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Figure 3: Convergence rate comparison:
for 6B� a , ��� H and SNR � I � dB
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Figure 4: Convergence rate comparison:
for 6B� a , ��� H and SNR � a8� dB
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Figure 5: Convergence rate comparison:
for 6B� H , ��� I and SNR � I � dB
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Figure 6: Convergence rate comparison:
for 6B� a , � � H , SNR � I � dB and ^ � ; # H


