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Résumé – De nombreuses problématiques de traitement du signal se ramènent à la résolution d’un problème 
d’optimisation combinatoire. Récemment, la Relaxation Semi-Definie (SDR) s’est révélée être une approche 
prometteuse en la matière, permettant une relaxation réaliste de problèmes NP-complets. Dans cet article, nous 
présentons un algorithme efficace pour résoudre SDR avec une complexité réduite.  L’objet principale est d’étudier 
des méthodes de programmation non linéaires qui reposent sur un changement de variable consistant à remplacer la 
variable symétrique définie positive X intervenant dans SDR par une variable rectangulaire V à travers la 
décomposition . Des résultats récents sur les rangs de matrices de corrélations extrémales permettent de 
conduire à un algorithme de faible complexité avec une perte négligeable en matière de performances. Des résultats 
très encourageants ont été obtenus pour résoudre des problèmes d’optimisation combinatoire de grande dimension, 
tel que celui qui intervient dans la détection multi utilisateur en mode CDMA.  
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Abstract –Many signal processing applications boil down to solve combinatorial optimization problems. Recently, Semi-Definite Relaxation 
(SDR) has been shown to be a very promising approach to combinatorial optimization, where SDR serves as tractable convex relaxation of 
NP hard problems. In this paper, we present an efficient algorithm for solving SDR with a low complexity. The main focus of this paper is on 
non-linear programming algorithms based on a change of variables that replaces the symmetrical, positive Semi-Definite variable X in SDR 
with a rectangular variable V according to . Some recent results on the rank of extreme correlation matrices permit to derive a 
low-complexity algorithm with almost no performance loss. Very encouraging results are obtained to solve large scale combinatorial 
optimization programs, as the one arising in multi-user detection for CDMA systems. 
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1. Introduction 

 
It is well known that the maximum likelihood (ML) 

detector for a multiuser signal in a CDMA context leads a 
large-dimensional combinatorial optimization problem. The 
typical dimension of this problem prohibits the use of 
classical global combinatorial techniques, such as the branch-
and-bound technique (whose complexity is exponential). This 
has triggered a very active field of research, whose main goal 
is to design sub-optimal algorithms with polynomial 
complexities but close-to-optimal performance (see [1] and 
references therein). Recently, several authors have 
considered a relaxation method, the Semi-Definite Relaxation 
SDR, which consists in replacing the original combinatorial 
optimization problem by linear programming over the cone 
of semi-definite matrices, cf. [2]. These authors have all 
considered interior point methods to solve the resulting 
convex problem. In this paper, we investigate a 
computationally simpler sub-optimal solution, based on a 
change of variable consisting in parameterizing the cone of 

semi-definite positive matrices as the product of rectangular 
matrices. The advantages of this approach over interior point 
methods have been evidenced in a recent work in [3].  

This paper is organized as follows. In section 2, the 
relaxation of the ML criterion to derive SDR is presented and 
in section 3 a sub-optimal solution of this non-linear 
optimization problem is considered. The interest of the 
proposed method is illustrated by extensive numerical 
Monte-Carlo simulations in section 4. 

2. The Maximum-Likelihood criterion 
and its relaxation 

The key equation of many digital communication 
problems can be written as ε+= AbY where  is an 
observed vector,  is a known matrix, is a vector of 
transmitted symbols to be estimated and 

Y
A b

ε  is a zero mean 
additive white Gaussian noise. For ease of presentation, it is 
assumed that all these quantities are real-valued and that the 
symbol alphabet is binary; adaptation to the complex case is 
straightforward. 
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This problem is of course prototypal of many signal 
processing applications including multi-user detection of 
CDMA signals. In this case, corresponds to the received 
signal after chip matched filtering and sampling (see [1]), and 
the columns of  are the convolution of the codes with the 
channel impulse responses. Assuming BPSK modulation, the 
Maximum-Likelihood detection scheme consists in finding: 
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The principle of SDR is to embed the combinatorial 
optimization problem into a much simpler convex 
optimization problem, as explained below. When runs 
through the vectors with coordinate in {-1, 1}, runs 
through the set of matrices: 
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+1NSwhere is the cone of positive symmetrical matrices of 

dimension (N+1). Our initial problem is then equivalent to 
minimize the scalar product  ( )QX

X 1+ND
Tr   with respect to the 

matrix  running through the elements of . If we 
ignore the only non-convex rank one constraint, we are left 
with a convex optimization problem, referred to as SDR, 
which consists in minimizing the same criterion over the set: 
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This optimization problem can be approximately solved at 
any required precision in polynomial time using interior point 
methods, as suggested in [4]. 

The solution of SDR is not necessarily of rank one. To 
approximate the optimal sequence, we then need to derive a 
rank one approximation of . A simple solution consists in 
using a randomization procedure, described below. Let 

be the Cholesky decomposition of the 

optimal matrix, and  be a parameter chosen arbitrarily. 
The randomization procedure can be described as follows:  
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uniformly distributed on the unit sphere of 
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3. Denoting   where v  is the first 

coordinate of , set b . 
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This technique finds it theoretical roots in graph theory (for 
more details, see [5]). The most commonly used technique to 

solve the problem SDR is the interior point method [6]. This 
method is however computationally intensive and memory 
demanding for high-dimensional data so that it  is not adapted 
to solve in real-time the typically very large problems that 
arise in the digital communications context  (in particular, in 
the presence of Inter-symbol Interference, see simulations 
section). In the rest of the article, we then consider a 
numerically efficient alternative to the interior point method. 
 

3. A Sub-optimal optimization method 
 
3.1 Low rank factorization 
 
To obtain a new formulation of SDR, we introduce, after 

[3], the change of variable where VVX T=
[ ]11 += NvvV K  is a real (N+1) by (N+1) matrix, 

which is taken here upper triangular with positive diagonal 
elements. In terms of the new variable , the resulting non-
linear program  
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is easily seen to be equivalent to SDR. Note however that 

the objective function and the constraints are no longer 
linear, but instead quadratic and the resulting program is non 
convex. We can simplify this new problem using a result 
shown by Barvinok [7] and Pataki [8] stating that there exists 
an optimal solution of SDR with rank *X *r satisfying the 
inequality ( ) 1** +≤+ Nrr 2/1 . In the sequel, we denote 

( ){ }1max0 +2/1 N, ≤+∈= Nr rrr . We can thus use 
the above result and solve a program similar to (2):  
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Since there exists an optimal solution of SDR of rank 

, the non-linear program is then equivalent to 

SDR whenever 
0

* rr ≤ rP

0rr ≤ . However, as illustrated in the 
simulation section, it makes sense to consider the problem 

with values of r much smaller than . While there is no 
theoretical guarantee that there exists a solution of the 
original SDR problem with rank r, it is still possible to 
determine a solution of the problem , and to use this 
solution to estimate the symbol vector b . 
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3.2 The Gauss-Seidel method 
 
We describe below a computationally simple algorithm for 

obtaining a local optimizer of the non-linear program . 
Contrary to "classical" problems in the optimization 

rP



literature, we concentrate on a non-linear Gauss-Seidel 
technique whose key features are its ability (i) to handle non-
convex equality constraints and (ii) to exploit the sparsity in 
the problem data (in large CDMA problems, matrix is 
most often sparse). We stress that the precision here is not an 
important issue of the problem. We must keep the memory 
requirements minimal (preserving e.g. the inherent sparsity of 
the data) and also, the number of computations by symbol 
should be lower than a constant (which prohibits line 
searching).  The Gauss-Seidel technique consists in updating 
successively the different columns of the matrix while 
letting the others constant. We denote  
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4. Numerical results: Performance and 
complexity  
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4.1 Performance 
  

Let  be the current value of the i column of the 

matrix at iteration n. Denote also 
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 the current value of the 

matrix . To update this matrix, we pass through all its 
columns and we update them in turn by solving the reduced 
constrained optimization program: 

In this section, the performance of the algorithm described 
above is discussed for a CDMA system with long-spreading 
sequences, derived from the specifications of the Universal 
Mobile Telecommunications System (UMTS), see [9], [10]. 
A model for multipaths Rayleigh fading channels, defined by 
the European Telecommunications Standard Institute (ETSI) 
and called "Vehicular B" is used. The channel impulse 
response of length W=60 is supposed to be known at the 
receiver. We considered slots of 320 chips here for the 
purpose of simulations. All users emit with the same power. 
The Bit Error Rate (BER, defined as the average BER over 
the different users, expressed in %) is computed by means of 
Monte-Carlo simulations. The SNR is defined here as the 
energy per transmitted S chips divided by the Gaussian noise 
spectral level. For each value of the SNR, 50 000 slots are 
generated.  
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rS  being the unit-sphere of rR . We notice that these 

optimization sub-problems can be solved in closed form: 
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We noticed that the convergence of the Gauss-Seidel SDR 
procedure is quick in this context, because the matrix  
is large but sparse.  All the results reported in this section 
have been obtained using five iterations and a rank equal to 
r=2. The average BER (in %) is displayed in figure 1 for 
U=32 users with spreading factor S=32 chips and in figure 2 
for U=4 users with spreading factor S=4. It is shown in these 
figures that the Gauss Seidel SDR technique significantly 
outperforms both the RAKE receiver and the MMSE 
detector, and even the EM with hard decision M-step (see 
[11]).  

AAT

Obviously, we have to update several times the whole 
sequence of columns before reaching convergence.  

An advantage of this method compared to other more 
sophisticated solutions is its ease of implementation and, 
because there is no need to compute and store gradients, the 
amount of computer memory required is low. Moreover, it 
does not involve line searches, and it is thus possible to 
determine the numerical complexity of one iteration of the 
algorithm. The update of one column of approximately 
amounts in (2N+3)r operations, so one iteration amounts in 

operations. We will perform in 
practice a fixed number of iterations. 
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The use of the Gauss-Seidel algorithm is justified for small 
spreading factors because (i) in this context, it significantly 
outperforms the EM with hard decision M-step, and (ii) since 
there is ISI in this configuration, we cannot estimate 
independently the different bits of a given user as it would be 
the case for high spreading factors (S=64 for example).  

3.2 Initialization of the Gauss-Seidel 
algorithm  

4.2 Complexity   In this section a method for computing a starting point 
is presented. The idea is to choose the vector  as a 

random vector uniformly distributed on the unit sphere of 

)0(V

rR , and then to compute successively the vectors 
by setting:  )0(

1, vL)0( ,v N

In the CDMA model described here, the matrix  is 
banded with band S+W-1, so that the correlation matrix 

 is also banded with band  

where 

A
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 x  is the smallest integer greater than x . Assume 



that each user transmits a bloc of  bits (with the notations 

introduced above, ). We then need approximately  
 flops to solve the linear 

system corresponding to the MMSE (if we use a band 
Cholesky procedure). On the other hand, if we use the Gauss- 
Seidel SDR algorithm and the rank-two relaxation with 

iterations, we need approximately 
flops. The EM algorithm requires 

dN
UNN d=

UNU d3+βNUN dd 72 +β

iN
( ) UNN di14 +β

βUNd2
2=iN

flops. In our simulations we took r=2 and 

so that the MMSE is approximately 3 times as 
complex as SDR which twice as complex as the EM 
algorithm. 
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In this article, we have explored a semi-definite relaxation 

of the Maximum Likelihood detector. To avoid 
computationally intensive interior point methods, a 
parameterization of semi-definite positive matrices  as a 
product of rectangular matrices is proposed, X . A 
simple Gauss-Seidel algorithm is used to obtain a (low 
precision) solution. This  technique, which is much simpler to 
implement than the other methods and which does not rely on 
line-searches, is a simple and efficient alternative to interior 
point methods especially at low spreading factor, with much 
lower complexity. The proposed algorithm outperforms the 
classical linear MMSE and the EM with hard M-step.  
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