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Résumé – Nous présentons les définitions et synthèses de processus stochastiques respectant des lois d’échelles qui s’écartent
de façon contrôlée d’un comportement en loi de puissance. Nous définissons des bruit, mouvement et marche aléatoire issus de
cascades infiniment divisibles (IDC). Nous étudions analytiquement le comportement des moments des accroissements de ces
processus à travers les échelles. Ces résultats théoriques sont illustrés sur l’exemple d’une cascade log-Normale non invariante
d’échelle. Les algorithmes de synthèse et les fonctions Matlab utilisés sont disponibles sur nos pages web.

Abstract – We address the definition and synthesis of stochastic processes which posses scaling laws that depart from power
law behaviors in a controlled manner. We define non scale invariant infinitely divisible cascading (IDC) noise, motion and random
walk. We provide a theoretical derivation of the scaling behavior of the moments of their increments. The example of a non
scale invariant log-Normal cascade illustrates these results. Algorithms for synthesis and Matlab functions are available from
our web pages.

1 Introduction

Scaling has been observed for many years in a large num-
ber of fields including natural phenomena: turbulence in
hydrodynamics, rythm of human heart in biology, spatial
repartition of faults in geology and others such as com-
puter networks and financial markets. The multifractal
formalism[14] has become one of the most popular frame-
works to analyse signals that exhibit scale invariance. In
current verbage, this term refers to the power law be-
havior of the absolute moments of increments δτX(t) =
X(t + τ) − X(t) of a process X . Then, scaling invariance
is to be described by a set of multifractal exponents ζ(q)
such that1

E|δτX(t)|q = Cqτ
ζ(q) as τ → 0. (1)

For instance, statistically self-similar processes such as
fractional Brownian motions [11] with Hurst exponent H
fit into this framework with ζ(q) = qH .

In real world applications, one usually confines to ob-
serving power laws in a given range of scales τmin ≤ τ ≤
τmax as a best approximation to (1) and to the multi-
fractal formalism which originally aims at the description
of singularities in the trajectories of processes (compare
(1)). We refer to such behavior as multiscaling to distin-
guish it from multifractals. The need for an appropriate
mathematical framework substituting (1) is met with the
one of the infinitely divisible cascades (IDC) [5]. It al-
lows for more flexible scaling and thus better fitting of

1A definition which works for any process is:

ζ(q) = lim inf
τ→0

log
τ

E|δτ X(t)|q .

data and honors the contribution of all scales in a range
of interesting scales τmin ≤ τ ≤ τmax as follows:

E|δτX(t)|q = Cq exp[−ζ(q)n(τ)], τmin ≤ τ ≤ τmax, (2)

where n(τ) is some monotonous function. Such a behavior
is analysed in terms of a cascading mechanism through the
scales from τmax to τmin. In terms of scale dependence,
the IDC framework generalizes (1) which is recovered by
choosing n(τ) = − log τ . The difference in spirit lies in
the fact that multifractal analysis applies to any process
(compare footnote 1) and is concerned with local proper-
ties in the limit of fine scales, but not finite scales. Note
that both, multifractal analysis and IDC scaling can be
formulated using wavelet coefficients [13, 17].

While analysis tools for multiscaling processes and in-
finitely divisible cascades have been widely developed, only
few recent works proposed tools for synthesis of processes
with prescribed and controllable IDC scaling [1, 3, 9, 15,
16]. Multiplicative cascades have always played a central
role to this purpose in intimate connection with multifrac-
tals. The synthesis of IDC presented below can be seen as
a generalized continuous multiplicative cascade. Follow-
ing a work by Barral & Mandelbrot [3] and inspired by
the densified multiplicative cascades by Schmitt & Marsan
[16] and the Multifractal Random Walk by Bacry et al.
[1], we recently discussed and studied the Infinitely Di-
visible Cascading processes [6, 8]. Similar results were
obtained independently and simultaneously by Bacry &
Muzy [2, 12]. We extend our previous work to the case of
non scale invariant IDC [7]. These continuous-time pro-
cesses have stationary increments and exhibit continuous
scaling laws with prescribed exponents (cf. ζ(q)) as well
as prescribed departures from power law behaviors (cf.
n(τ) 6= − log τ).
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Fig. 1: (left) Infinitely Divisible Cascade: the geometrical ”distribution of multipliers” is random, stationary
in time and continuous in scale in the time-scale half-plane. (right) Dependence between Qr(t) and Qr(s), in
particular their correlation, stems entirely from the contribution of the intersection of two cones Cr(t) and Cr(s)

2 IDC Noise

Let G be an infinitely divisible distribution with moment
generating function G̃(q) that can be written in the form
e−ρ(q).

Let dm(t, r) = g(r)dtdr a positive measure on the time-
scale half-plane P+ := R × R

+.
Let M denote an infinitely divisible, independently scat-

tered random measure distributed by G, and supported
on the time-scale half-plane P+ and associated to its so-
called control measure dm(t, r). Random measure M is
such that IE[exp [qM(E)]] = exp [−ρ(q)m(E)]; for all dis-
joints subsets E1 and E2, M(E1) and M(E2) are indepen-
dent random variables and M(E1 ∪E2) = M(E1)+M(E2).

Definition 1.
A cone of influence Cr(t) is defined2 for every t ∈ R as
Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t − r′/2 ≤ t′ ≤ t + r′/2} (see
Fig. 1).

An Infinitely Divisible Cascading noise (IDC noise) is
a family of processes Qr(t) parametrized by r of the form
(see Fig. 2)

Qr(t) =
exp [M(Cr(t))]

IE[expM(Cr(t))]
. (3)

Possible choices for distribution G are the Normal distri-
bution, Poisson distribution, compound Poisson distribu-
tions, Gamma laws, Stable laws...

Immediate consequences of the definition are that Qr is
a stationary positive random process with:

EQr = 1 (4)

Stationarity is ensured by the specific choice of a time-
invariant control measure dm(t, r) = g(r)dtdr.

Altogether, the measure M , the distribution G, the con-
trol measure m and the geometry of the cone of influence
Cr(t) control the scaling structure as well as marginal dis-
tributions of the cascade. One major property of IDC
noises is:

E[Qq
r] = exp [−ϕ(q)m(Cr)] (5)

2Note that the large scale in the definition of Cr(t) has been
arbitrarily set to 1 without loss of generality. Choosing a different
large scale L would simply reduce to a change of units t → t · L,
r → r · L.

where
ϕ(q) = ρ(q) − qρ(1), (ϕ(1) = 0), (6)

for all q for which ρ(q) = − log G̃(q) is defined. Note the
similarity between (5) and (2).

A nice property of IDC noises lies in the geometrical
interpretation of their correlations that are controlled by
the intersections of cones Cr(t) ∩ Cr(s) in the time-scale
plane P+ (see Fig. 1).

3 IDC Motion & Random Walk

By analogy with T-Martingales and binomial cascades in
particular, we introduce the Infinitely Divisible Cascading
Motion as the integral of Qr(t).

Definition 2.
An Infinitely Divisible Cascading Motion (IDC-Motion)
A(t) is the limiting integral3 of an IDC-noise Qr(t) (see
Fig. 2):

A(t) = lim
r→0

Ar(t), (7)

where

Ar(t) =

∫ t

0

Qr(s)ds. (8)

The increment process δτAr(t) = Ar(t + τ)−Ar(t) of Ar

inherits stationarity from Qr since δτAr(t) =
∫ t+τ

t Qr(s)ds.
An IDC Motion A(t) inherits scaling properties from its
IDC Noise Qr(t) as shown below in Section 4.

By construction, A is a non-decreasing process which
appears most natural in some real world contexts, but
can be seen as a severe limitation in others. Following an
idea which goes back to Mandelbrot [10] and to the Brow-
nian motion in multifractal time, we define a process with
stationary increments, continuous scale invariance, pre-
scribed departures from power laws and prescribed scal-
ing exponents as well as positive and negative fluctuations:
the Infinitely Divisible Cascading Random Walk, VH .

Definition 3. Let A be an infinitely divisible cascad-
ing motion, and BH the fractional Brownian motion with
Hurst parameter H. The process

VH(t) = BH(A(t)), t ∈ R
+, (9)

3Conditions for the convergence of the positive martingale Ar as
r → 0 are detailed in [7].



0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

t

Q
r(t

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

t

A
r(t

)

0 1 2 3 4 5 6 7 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

V
H

(t
)

Fig. 2: Sample of a realization of (left) Qr(t), (middle) A(t) and (right) VH(t).

is called an Infinitely Divisible Cascading Random Walk
(IDC Random Walk).

IDC Random Walk inherits stationary increments from
both BH and A. Above all, the precise scaling behavior
of A(t) is transferred to VH(t) thanks to the self-similarity
of the fractional Brownian motion as explained below.

4 Scaling behavior of IDC

This section states our major results: it characterizes the
scaling properties of an IDC-Motion and its associated
IDC-Random Walk. The reader is referred to [7] for de-
tailed proofs. While scaling behaviors are rather easy to
describe, their mathematical proof calls for some techni-
cal assumptions. Thus, we require the following notation.
For an IDC Motion Ar with control measure dm(t, r) =
g(r)dtdr we set for b ∈ (0, 1) and ν > 0

Cb,ν [g] := sup
0<t≤b

1

tν
·

E sup0≤s≤t |Qb(s)
q − Qb(0)q|

E[Qb(0)q]
(10)

and we introduce, for r < bn,

A(n)
r (t) =

1

bn

∫ tbn

0

Qr(s)

Qbn(s)
ds (11)

This cascade has control measure dm(n)(t, r) where

g(n)(r) := b2ng(bnr) · 1[0,1]. (12)

Since m(n)(Cr/bn(s)) = m(Cr(b
ns)\Cbn(bns)) we may un-

derstand A(n) as a zoom into the small scale details of A.
In the scale invariant case (dm(t, r) = dtdr/r2) we have
g(n) = g and, thus, A(n) in equal in distribution to A.

Theorem
Let q > 0, b ∈ (0, 1) as well as the infinitely divisible law,
i.e., ρ(·). Let Ar be an IDC Motion with control measure
g(r)dtdr. Assume that their are constants b ∈ (0, 1) and
ν > 0 such that Cb,ν [g(n)] are finite and remain bounded

as n → ∞; assume that Ar as well as A
(n)
r for large n

converge in Lq. Then there exist constants Cq and Cq

and C
′

q, C′
q such that for any t < b

Cqt
qe−ϕ(q)m(Ct) ≤ IEA(t)q ≤ Cqt

qe−ϕ(q)m(Ct), (13)

C′
qt

qHe−ϕ(qH)m(Ct) ≤ E|VH(t)|q ≤ C
′

qt
qHe−ϕ(qH)m(Ct). (14)

The assumptions of the Theorem are verified for com-
pound Poisson distributions as well as for the Normal dis-
tributions, assuming that the functions g(n) converge (see
[7]).

The scaling behavior of VH is a direct consequence of the
self-similarity of a fractional Brownian motion BH com-
bined to the scaling behavior of an IDC Motion A. using
the self-similarity of BH , one finds that

E[|VH(t)|q] = EE[|BH(A(t))|q
∣

∣A]

= E[|B(1)|q] · E[A(t)qH ]. (15)

In practice, the fact that A(t) and VH(t) have stationary
increments and A(0) = 0 and VH(0) = 0 yields, ∀τ ≤ 1,

{

E[δτAq] ∼ Cqτ
q exp [−ϕ(q)m(Cτ )] ,

E[δτV q
H ] ∼ C′

qτ
qH exp [−ϕ(qH)m(Cτ )] ,

(16)

where ‘∼’ is used as a short notation for inequalities like
in (13) and (14). It turns out that both sides of the ‘∼’
are close to proportional for τ � 1. Moreover, one expects
that E[δτAq] ∼ τq and E[δτV q

H ] ∼ τqH for large τ � 1.
A key property of these scaling behaviors (13) or (16)

is that they hold continuously through the scales, not only
for a particular set of discrete scales. Again, we put the
emphasis as well on the fact that the construction of Qr

and A enables a full control of the way the cascading pro-
cess develops along scales and not only of the multifractal
behavior obtained in the limit τ → 0. As far as appli-
cations and real world data modeling are concerned, we
believe that the control of the entire cascade process is
probably more relevant than that of the asymptotic be-
havior as τ → 0 only.

Recall that previous works[4, 5, 17] inspired a priori the
search for non power law scaling of the form exp[−ζ(q)n(τ)]
as in (2). Rather, through our approach we are naturally
led in (13) and (14) to a mixture of a power law and a non
power law behavior of the form τq ·exp[−ϕ(q)m(Cτ )]. This
result is inherent to the use of an integral to define A(t).
On one hand, the exp [−ϕ(q)m(Cτ )] term is related to the
underlying IDC-Noise Qr(t). On the other hand, the τq

term is due to the fact that an IDC-Motion is obtained
by integration of an IDC-Noise. Equation (16) does not
reduce to (2) unless n(τ) = − log τ .

5 Example

As an example of an IDC with the required properties,
we propose to consider a Log-Normal cascade, i.e., dis-

tribution G is N (µ, σ2) and ϕ(q) = σ2

2 q(1 − q). We
choose the control measure dm(t, r) = 1/r2+βdtdr with
β < 0, which leads to the non scale invariant function
m(Cτ (0)) = (τ−β−1)/β. This choice provably satisfies the
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Fig. 3: Non scale invariant cascade deviates from power laws: (left) log E[(δτA/τ)2] compared to −ϕ(2)m(Cτ );
(center) log E[(δτ V/τH)2] compared to −ϕ(2H)m(Cτ ). Scale invariance would correspond to straight lines. (right)
Prescribed exponents ϕ(q) can be estimated.

conditions of the theorem above and corresponds to the
model known as the Castaing model [4] in hydrodynamic
turbulence. Note that β = 0 reduces to the well-known
scale invariant case (m(Cτ ) = − log τ) [1, 3, 8]. Parameters
of the simulation are µ = −0.1, σ2 = 0.2 and β = −0.4.
The Hurst exponent H of the fractional Brownian motion
BH used to build VH(t) has been set to H = 1/3.

Departures from powerlaw behaviors corresponding to
the exp[−ϕ(q)m(Cτ )] term in (13) are expected. Fig. 3

shows that such departures are observed on both A(t) and
VH(t). The performed analysis focuses on E[(δτA/τ)q ] ∼
exp[−ϕ(q)m(Cτ )], resp. E[(δτV/τH)q] ∼ exp[−ϕ(qH)m(Cτ )].
In a log-log plot, a curvature is clearly visible whereas the
scale invariant case (β = 0) would have led to straight
lines. Remark that this curvature is accurately controlled
for τ < 1 by the form of m(Cτ ) 6= − log τ . These numerical
observations are perfectly consistent with our theoretical
results. Exponents ϕ(q) can be estimated as well from
linear regressions in log E[(δτA/τ)q] vs m(Cτ ) diagrams –
Fig. 3(right): prescribed exponents are recovered.

The correction term to the powerlaw may be subtle, yet
it is true scaling and cannot be subsumed by a constant
error bound. Up to our knowledge, these are the first cas-
cades displaying controlled non power law behaviors up to
a large range of scales (two decades on Fig. 3).

In the present work, we proposed the definitions of con-
tinuous -time processes with controlled continuous mul-
tiscaling behavior. Most importantly, scaling laws exist
continuously through the scales and possible departures
from a power law behavior are taken into account. Up
to our knowledge, Infinitely Divisible Cascading processes
are the first continuous multiplicative cascades display-
ing controlled non power law scaling behaviors. Potential
fields of application range from hydrodynamic turbulence
to computer network traffic. Matlab routines to syn-
thetize these processes will be available on our web pages:
www.isima.fr/∼chainais, www-ece.rice.edu/∼riedi,
www.ens-lyon.fr/∼pabry.
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