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Abstract — A new concept, radiometric multiresolution analysis (RMA) is proposed by applying multiresolution analysis to statistical

mechanics. A measure issued from RMA decomposition is taken as a measure of homogeneity for speckled signal. This measure is

speckle-model free. Some results of speckle filter for both synthetically generated image and SAR image by the RMA are shown.

1. INTRODUCTION

In radar image analysis, it is necessary to reduce
multiplicative correlated noise, also called speckle noise.
Two global types of speckle analysis have been developed:
statistical analysis and wavelet-based space-frequency
analysis. The former has been developed for more than 20
years, and the latter was proposed in the 1990’s.

Speckle in a single image is generally treated as a
multiplicative process!'): I= 0 n where I is the intensity of
the image, o the reflectivity and n the speckle
contribution. In homogeneous areas (where the reflectivity
0 is constant) the observed intensity I obeys a Gamma
distribution.

The use of wavelets to filter images with additive noise
is well documented in the literature. Wavelet transform is
directly applied to speckled Radar images in some methods
(2I5) 1t is shown that the wavelet coefficients are modulated
by the multiplicative character of the speckle, and that they
are also sensitive to a local linear transformation of data.

We know that the wavelet analysis is a linear transform
and techniques of singularity detection and de-noising
based on wavelet transform are developed for additive
noise. However, speckle is not additive noise. An easy way
to turn a multiplicative process into an additive one is to
apply a logarithmic transformation'!. In this case, a bias is
introduced in the estimation.

Some experiments® have reported that the results of
the wavelet-based speckle filters are not better than those of
traditional statistical speckle filters.

Most adaptive statistical filters, such as Kuan[é],
Wu-Kuan'” and EPOS®! speckle filters, take the local
normalized variance as a measure of the speckle level.
However, this criterion is very sensitive to the spatial
arrangement of neighboring pixels. It is hard to find a
threshold between the measure of speckle variance and the
variance caused by edges. In addition, this measure is

estimated under a speckle model (a Gamma distribution),
but the probability density function (PDF) of speckle may
noticeably differ from it'”),

Therefore we propose a model-free, more robust
method to analyze speckle and explore a new way for
speckle filtering.

2. RADIOMETRIC MULTIRESOLUTION
ANALYSIS (RMA)

2.1 Concept of the RMA

We propose to apply wavelet-based multiresolution
analysis to local statistics of data instead to data itself. The
reason for wavelet-based multiresolution statistical analysis
derives from the fact that the probability distribution of
Radar images has, like wavelets kernels, the property to be
invariant under expansion (ref.: Fig.1a). Another important
fact is that in a heterogeneous zone a combination of
probability distributions exists. Within an analysis window,
including m different zones, the PDF p,,)(R ) of the signal
r(n) in the window behaves like the linear combination of
every PDF in these zones, that is:

Doiny(R) = Zm Co Py (R) where ¢, are the ratio of

the area m to the analysis window area. These distributions
may well be detected and separated using multiscale
analysis.

We define RMA as the wavelet transform of the local
probability density p;m(R) of the signal r(n). The
components of the function p,y,(R) on the wavelet basis
functions are described by

D,p®) ={p,,(RY,,R)) (1)
where <, > is the inner product defined in the space of

measurable, square integrable functions p,,(R), a>0 is the
scale parameter, r[J[] is the translation parameter, ¥ is



a fixed function called the “mother wavelet”, which is well
localized in space and scale and has a compact support and

l[la’b(n):a_llllépbg. Equation (1) can also be
a

interpreted as a process of correlation with radiometry R as
variable of integration, which is why we call it radiometric
multiresolution analysis. Comparatively, conventional

wavelet transform ¢, , :<r(n),L,Ua’b (n)> with space n

as variable of integration is a spatial multiresolution

analysis.
Mallat  proposes''” a  multiresolution si gnal
decomposition based on an orthogonal wavelet

representation, which is particularly powerful to analyze the
information content of signals. Mallat’s approach is taken
as the underlying core of our research on the RMA.

In RMA, the approximation of the probability density
function p,u)(R) at the resolution a, is thus denoted by

A,p(b) :<pr(n)(R),(0”’b(R)> where @ is a scaling

function and @, ,(n) = a_l¢éL;bEl

2.1 Algorithm to estimate the RMA

We define RMA as the wavelet transform of the local
probability density as estimated using local normalized
histogram. We present now an efficient algorithm to
estimate the RMA directly from image data.

Assuming that the time average of a set member, over
the infinite past and future is equal to the set average, which
can be written as:

w0 .1
I_m Rp. ., (R)dR = }/1{1010 ﬁﬁv r(n)dn )

We can expand (2) into a more general form by considering
an arbitrary function of r(n), ¥ [r(n)], instead of r(n) itself,
which gives:

- 1
[ ®Rp, ., (R)R = lim ﬂv Ylrm)an 3

and in the case of finite pixels in an analysis window, the
right hand side of (3) can be approximated by

N 1 &
}]15130 ﬁﬁNw[r(n)]dn Y ; l,U[r(n)] 4)
Since equation (1) can be rewritten as:

D,p(®)= [ W.y(R)p,y(RR — (5)

replacing (3) with (4) and (5), an estimate of the wavelet
decomposition on scale a of the PDF can be found directly
from the image r(n):

D, pb) = lim L ylrn)dn = %zw [r(m)]
(6)

For the same reason, the estimate of the PDF
approximation on scale a is given by

A,p0) = lim 5[ drnkin =05 @, 0]
(7)

Now we may define exactly the radiometric
multiresolution analysis (RMA) by radiometric wavelet
decomposition (6) and the PDF approximation (7) of a
random signal r(n).

3. RMA FoOR SPECKLE FILTER

3.1 Measurement of homogeneity

It is well known that an important speckle reduction
can be obtained if a homogeneous zone around the pixel to
be filtered is considered as an analysis window for the
estimation. Generally, local relative standard deviation is
taken as a measure of homogeneity [“*. However, local
relative standard deviation is rather random, exactly, the
probability density function of squared that approximates
the chi-squared function.

Based on the RMA, properties at larger scales and
relationship between those at different scales are taken as a
measure of homogeneity. Let us consider a speckled image
(Fig.1a) with a vertical edge in the middle, the left half part
has lower mean reflectivity o ; and the right half part has
higher mean reflectivity 0 ,. The ideal PDFs of the two
parts should be as shown in Fig.1b. We take a scanning
window with size of 7 X 7 pixels.

o,

(b)
FIG. 1: (a) A speckled image with a vertical edge in the
middle (scanning widow 7 X 7); (b) The ideal PDFs of the
two homogeneous areas.

Hypotheses: In a scanning window,

Case 0: homogeneous signal (as at position 0 of Fig.1a).

Case 1: a small number of pixels belongs to the area with
lower reflectivity (as at position 1).

Case 2: a small number of pixels belongs to the area with
higher reflectivity (as at position 2).

Case 3: a boundary between the two stationary areas (as at
position 3). W

Case 1 or Case 2 are equivalent to a line crossing a
homogeneous area. The ideal PDFs corresponding to the
case 1, 2 and 3 should be as in Fig.2.

Practically, the PDF curves will probably not be
exposed to such a noisy signal in so small analysis windows
as in Figure 1(a). Using second-order Coiflet function, we



present an approximation of PDF on scale 27 in Fig.3
where the ideal PDF curves do not appear clearly. However,
an important fact is exposed: higher-order statistics should
be used to measure the homogeneity. Exactly, a lower
skewness (associated with third-order moment) and a
higher kurtosis (associated with fourth-order moment) of
PDF in Fig.3 means a higher homogeneity, whereas relative
standard deviation using only second-order statistics to a
non-Gaussian signal is insufficient to be a measure of the
homogeneity. Especially, for Case 1, it is difficult to tell
homogeneous signal from heterogeneous one by relative
standard deviation, while the skewness is very different
(ref.: Fig.3a) in this case.

Note that, in another hand, an estimate of a
higher-order statistics with a small number of samples has a
high variance "'J. The usefulness on the proposed method is
better demonstrated when looking at the wavelet
coefficients computed by (6). Figure 4 present the wavelet
decomposition of the RMA on scales 1, 2" and 27
corresponding to case 1, 2 and 3 compared with those of a
homogeneous signal Case 0.

(a) (b) ()
FIG. 2: The ideal PDFs corresponding to (a) Case 1, (b)

Case 2 and (c) Case 3 of Figure 1(a)

(a) (b) (c)
FIG 3: Approximation of PDF by the RMA on scale 2 for
(a) Case 1, (b) Case 2 and (c) Case 3 compared with that for
homogeneous signal (dash line) with scanning window 7 X7

o
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F1G.4: The RMA
decomposition on scale
- 1,2'1 and 272 for (a) Case 1,
N~ (b) Case 2 and (c) Case 3
o compared with those for
homogeneous signal
= (shown by dash line) with
(©) scanning window 7 X7

[12], [13] give us some principles to detect singularity
and characterize signal based on multiresolution
representation computed using dyadic orthogonal wavelets.
Accordingly, the local extrema and the zero-crossings of
the RMA composition can well characterize the high-order
statistics of the PDF behind in the signal samples.
Accordingly, following are some important properties of
heterogeneity on radiometric wavelet transform, where the
translation parameter r is normalized by 400 over the local
mean-reflectivity.

[HP1] The maximum of D;p in the middle range
H,=Max[D;p(300:600)] is lower.
[HP2] The number of zero-crossings between 200 and 600
will be more than 1: H,=Num[D2-1(200:600)=0]<1.
[HP3] If Hy=1, then
H4=Arg[D,p(500:1000)=0]-Arg[Dp(0:500)=0] is
larger.
For Case 2 and 3,[HP1] and [HP2] or [HP3] are
evident, but they are not for Case 1. The following
properties expose well the skewness especially for Case 1.

[HP4.1] H, = ‘Max[Dz-.p] —Ml'n[Dz-lp]‘ is larger.
[HP4.2] H,, :‘ArgMax[Dlp]—ArgZero[Dz,.p]‘ is larger.

_ ArgMax[D,. p]+ ArgMin[D,. p] -
. —2ArgZero[D,. p]

larger.

[HP4.3] is

We take [HP2] and , _ 3 _, ¢, as the measure
1
of homogeneity in our implementation.
This measurement is speckle-model free.

3.2 The RMA in EPOS speckle filter

In [8], an efficient statistical filter of speckle called
EPOS algorithm is proposed. The process of the algorithm
contains the following steps.

Step 1: Estimation of the relative standard deviation from
the image.

Step 2: Calculation of the relative standard deviation for all
degrees of freedom from the chi-squared distribution.

Step 3: Searching for the largest homogeneous area around
each pixel.

Step4: The area found is used for calculating the new
gray-value by averaging.

Now we apply the RMA to EPOS filter. Step 1 above is
omitted and, in Step 2, the criteria of homogeneity
described in section 3.1 are taken as the measure of
homogeneity instead of relative standard deviation.

Fig.5 shows a synthetically generated image without
and with multiplicative Rayleigh noise added. The results
of the filtering are shown in Fig.6 for the Kuan filter [ on
the left and for the RMA-EPOS filter on the right side.
With the RMA-EPOS filter the texture in the image is
better restored and the speckle within the homogeneous
areas is higher reduced.



Fig.7 shows an original SAR image from the ERS-1
satellite and filtered result. The legibility of the image is
considerably improved, mainly in the textured parts in the
filtered image.

@
FIG 5: Synthetically generated image (a) without and (b)
with Rayleigh speckle

(b)
FIG 6: Filtered image with (a) Kuan and (b) RMA-EPOS
filter

4. RMA FOR SPECKLE FILTER

A new type of speckle analysis, radiometric
multiresolution analysis (RMA), is proposed and the
potential of using it for speckle filter is shown.
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B 1 E (b)
FIG 7: SAR image from the ERS-1 (a) original and (b)
RMA-EPOS filtered



