
Robust decoding of VLC encoded Markov sources

Arnaud Guyader, Eric Fabre, Christine Guillemot

IRISA/INRIA
Campus universitaire de Beaulieu, 35042 Rennes, France

firstname.lastname@irisa.fr

Résumé – Le décodage robuste de codes à longueurs variables (VLC) est un problème conjoint de segmentation et d’estimation
du train binaire. Segmentation et estimation robustes du train binaire, en présence de bruit, nécessitent la ré-introduction de
redondance dans le flux. Au lieu d’utiliser des codes correcteurs, nous proposons d’introduire la redondance dans le train de
symboles, ceci afin d’aider la re-synchronisation du décodeur de VLCs. La procédure revient à étendre certains symboles avec un
suffixe. Ces suffixes peuvent avoir une longueur arbitraire (fonction du degré de redondance désiré) et n’ont pas à être reconnus
avec une probabilité proche de 1. Ils peuvent être vus comme des points d’ancrage favorisant la vraisemblance des séquences
correctement synchronisées et pénalisant les autres.

Abstract – The problem of robust decoding of VLC encoded streams in presence of channel errors is essentially a problem
of joint estimation and segmentation of the bit stream. A correct segmentation and estimation of a VLC compressed stream in
presence of channel noise requires to re-augment the redundancy of the stream. Instead of using a channel code, the approach
described here dedicates specifically extra bits to help the VLC decoder re-synchronization. The procedure amounts to extending
symbols at known positions with a suffix. These suffixes can have an arbitrary length (depending on the degree of redundancy
desired) and need not be recognized with probability close to 1. They serve as anchors to favor the likelihood of correctly
synchronized sequences and penalize the others.

1 Introduction

VLCs are widely used in data compression schemes, in or-
der to remove part of the symbol source redundancy, hence
to reduce the length of the transmitted bit stream. How-
ever VLCs are very sensitive to channel noise: when some
bits are altered by the channel, synchronization losses can
occur at the receiver, which means that the position of
symbol boundaries are not properly estimated, thus lead-
ing to dramatic symbol error rates. This phenomenon has
led some authors to abandon VLCs, and prefer instead
a pre-processing (e.g. non-uniform quantization) provid-
ing uniformly distributed symbols, and allowing the us-
age of fixed length codes. Other authors have proposed
modified VLCs (self-synchronizing Huffman codes [1], [2],
reversible VLCs [3, 4, 5]) to fight against desynchronizat-
ions. RVLCs offer the advantage of being decodable “in
both directions” of time, allowing a correct decoding of
the bit stream at both extremities, even if synchronization
is lost in the middle. In video coding standards (H.263,
MPEG1-4), synchronization codewords (synchronization
markers) are inserted at fixed intervals in the bit stream.
Notice that these markers are “perfect” synchronization
points since the probability to recognize them is very close
to 1.

Alternate solutions consist in re-augmenting the redun-
dancy of the bit stream by introducing an error correcting
code in the chain [6], [5], [7]. The authors in [6] derive a
global stochastic automaton model of the transmitted bit
stream by computing the product of the separate mod-
els (Markov source (MS), source coder (SC) and channel
coder (CC)). In [5], the authors remove the memory as-

sumption for the source and consider a VLC coder fol-
lowed by a convolutional coder, these two components be-
ing separated by an interleaver. In order to exploit the
inter-symbol correlation, the authors in [7] push further
the above idea by designing an iterative estimation tech-
nique alternating the use of the three models (MS, SC, and
CC). It is shown that taking into account the inter-symbol
correlation is crucial for the resynchronization. The com-
plexity of the (MAP) decoding algorithm, although signif-
icantly reduced with respect to the approach based on the
global model, remains rather high. We address here the
problem of decoder re-synchronization directly within the
simple chain composed of only the MS and SC models. It
has been proved in [7] (see also [8]) that joint decoding
for the pair MS+SC can be done optimaly by performing
first a soft source decoding (based on SC alone) followed
by an estimation of the symbol stream which exploits the
inter-symbol correlation (MS). Hence we focus here on the
source decoder.

In order to fight against “desynchronizations” the soft
source decoder can rely on two kinds of information : the
residual intra codeword redundancy, and mostly the length
constraint for the bit stream. The latter ensures that the
K symbols sequences produced by the source model do
match the N bits sequence. Synchronization is therefore
ensured both at the beginning and at the end of the bit
stream. This property is given for free and doesn’t need to
be based on a “reversibility” property of the VLC. From
this it appears that only the augmented internal redun-
dancy of RVLCs is useful for fighting against “desynchro-
nizations” and for properly estimating the bit stream.

On the other hand, the decoding of the received bit
stream is a problem of joint segmentation and estimation.
Therefore, the redundancy incorporated in the signal must
precisely help achieving these two tasks. The first one
(segmentation) is the most crucial, since most of the er-
rors come from “desynchronizations”. Hence, we dedicate
specifically the extra information to help the resynchro-
nization. This extra information takes the form of dum-
my symbols which are inserted in the symbol stream, at
some known positions. Notice that, unlike the long words
used to identify the beginning and the end of the sequence
of information bits, these extra symbols are not “perfect”
synchronization points : the probability to recognize them
is far from 1, whence the name of “soft synchronization
points”. In contrast with “self-synchronizing” code de-
sign, these patterns are not part of the code. The redun-
dancy introduced is therefore easily controlled to adapt
to varying channel characteristics. The difference with an
error correcting code is that these suffixes are known a
priori ; they are not a function of the information bits.
In the joint segmentation-decoding process they serve as
“anchors :” they favor the likelihood of correctly synchro-
nized sequences, and penalize the others.

2 Problem statement

Let S = S1 . . . SK be the sequence of quantized source
symbols taking their values in a finite alphabet composed
of 2q symbols and coded into a sequence of information
bits U = U1 . . . UN , by means of a VLC coder. The
sequence S = S1 . . . SK is assumed to form a Markov
chain. The variables k and n represent generic time in-
dexes for the symbol clock and the bit clock, respectively.
We denote by Ūk the codeword corresponding to Sk, so
U = Ū1 . . . ŪK represents the bit stream U segmented in-
to codewords. Both K and N are assumed to be known,
since the difficulty is in the treatment of this information.
The length N of the information bit stream is a random
variable, function of S. The bit stream U = U1 . . . UN is
sent over a memoryless channel and received as measure-
ments Y = Y1...YN . The MAP decoding problem consists
then in estimating S, given the observed values Y N

1 .

3 Models of the pair MS + SC

The symbols Sk are translated into codewords Ūk by a de-
terministic function defined by the source coder. If we first
assume the symbols to be independent, a bit clock model
of the source coder (i.e. for P(Ūk)) follows immediately :
the Huffman tree of the coder is viewed as a stochastic
automaton that models the bit stream distribution. If
L symbols are possible for each Sk (L = 2q), the Huff-
man tree contains L leaves (symbols {α1, . . . , αL}), and
L−1 inner vertices, that we denote by {v1, . . . , vL−1} (see
fig 1). The state Xn of the model, reached after n tran-
sitions of this automaton, is a vertex ν of the tree, and
the value of the bit Un is a deterministic function of the
transitions (Xn−1, Xn). Each leaf of the tree is identified
to the rootnode to prepare for the generation of the next
symbol.

To build a model of correlations introduced by both the
symbol source and the coder, one must map P(Sk|Sk−1) on
the codeword tree, instead of P(Sk), and hence keep track
of the last symbol produced. This is explained in more
details in [7], [8]. If all symbols are encoded with the same
tree, this amounts to varying the transition probabilities
on this tree with the last symbol produced, as shown in
fig. 1 for a simple example (symbol source S taking values
in {α1, α2, α3, α4}, with a stationary distribution Ps =

[37
1
7

2
7

1
7] and a transition matrix Pt =

[
0 1

3
1
3

1
3

1
2 0 1

2 0
1 0 0 0
1
2 0 1

2 0

]
).

α2 α4coming from or α1coming from α3coming from

α4

α1

v3

v1

2v

α4

α1

v3

v1

2v

α4

α1

v3

v1

2vα2

α3

α2

α3

α2

α3
?

?

0

1

?

?

?

?

1

0

1/2

1/2

0

1/2

1/2

1
1/3

2/3

Fig. 1: For a Markov source, the transition probabilities
of the source must be mapped on the code tree to model the
dependencies in the output bit stream.

However, in the case of VLCs, knowing the bit index
n is not sufficient to determine the rank k of the sym-
bol being constructed, i.e. to determine what probability
P(Ūk|Ūk−1) governs the next transition. Therefore this
information must be available jointly with the state vari-
able Xn. For this we augment the state variable Xn with
a counter Kn of the number of achieved symbols at time
n. This amounts to defining a Markov chain distribution
on pairs (Xn, Kn).

The transition probability from (Xn, Kn) to (Xn+1, Kn+1)
is thus determined by P(ŪKn+1|ŪKn) for the X componen-
t, and for the K part, one has Kn+1 = Kn + 1 each time
a new symbol is finished by Xn+1 (i.e. each time Xn+1

reaches a new leafnode), otherwise Kn+1 = Kn.

Additional constraints : In presence of noise, the po-
sitions of the symbol boundaries in the bit stream may not
be estimated properly, due to a possible de-synchronization
between the two clocks (bit clock and symbol clock). In or-
der to fight against this de-synchronization problem, addi-
tional constraints can be introduced : one can ensure that
the K symbols produced by the source model do match
the N bits sequence, by adding some kind of “perfect ob-
servation” on the last state XN stating that XN is the
rootnode of the huffman tree [7]. This prevents estimates
from giving a non integer number of symbols. One can also
constraint the decoder to have the right number of sym-
bols (KN = K) (if known) after decoding the estimated
bit stream Û . These constraints ensure synchronization
at the end of the bit stream, but do not ensure synchro-
nization in the middle of the sequence, as shown in fig. 2.
The re-synchronization at both ends of the sequence does
not require any reversibility property of the code, nor any
redundancy.4 Soft synchronization

Here, we consider the introduction of redundancy specifi-
cally designed to help the resynchronization “in the mid-
dle” of the sequence. For this, we introduce extra bits

0 50 100 150 200
−5

0

5

0 50 100 150 200
0

5

10

15

20

0 10 20 30 40 50 60 70
0

5

10

15

20

Fig. 2: Illustration of synchronization losses. The black
and white patches on the top curve display symbol lengths.
The estimated sequence is on top and the true one below.
The two other curves show the difference between the esti-
mated (dashed) and actual (solid) symbol values for each
bit clock (center) and symbol clock (bottom) instant.

at some known positions Is = {i1, . . . , is}) in the symbol
stream. Specifically, when the symbol clock k reaches a
value in Is, a known suffix of length ls is connected to this
k-th codeword.

The models above have to be modified to account for
this extra information. Let us consider the Markov chain
distribution on pairs (Xn, Kn). Let us recall that the
transition probability from Xn−1 to Xn is determined by
P(ŪKn |ŪKn−1). Inserting extra bits at known positions
in the symbol stream amounts to extending some symbols
with a suffix ŪKn ⇒ ŪKnB1 . . . Bls . In other words, for
Kn ∈ Is, one must use an extended codeword tree (see
fig. 3), where the leaves are followed by the construction
of the suffix. Transitions are deterministic in this extra
part of the tree, and observe that the memory of the sym-
bol produced is not lost by X . As a consequence of this
extended codeword tree, the symbol is considered as fin-
ished when the suffix is finished. In other words, the K
part of the state is augmented only when the end of the
suffix is reached.

v3

v1

2v

α1

α3

α2

α4

α1

1 1

11

11

11

0

1

1/2

1/2

1/3

2/3

coming from

suffixes

Fig. 3: Extended codetree for soft synchronization.

Estimation. The estimation could be performed on the
joint model for the pair MS+SC. However, we consider
instead an estimation algorithm based on the sequential
use of the MS and SC models, described in [7], which is
optimal. The decoding of the MS+SC pair hence proceeds
in two steps :

1. the first step consists in estimating states (Xn, Kn)
assuming symbols are independent, which uses only

the inner-codeword redundancy and the constraint
on K (i.e. the SC model alone) ; this amounts to
computing posteriors P (Xn, Kn|Y), which is done
by a standard BP algorithm.

2. the symbol stream is in turn estimated using sub-
products of P (Xn, Kn|Y), in order to incorporate
the inter symbol correlation (i.e. MS model). This
second step is performed on the symbol clock model
of the source, which requires some clock translation
of the soft information P (Xn, Kn|Y).

10

20

30

40

50

60

Gauss−Markov source
3 bit quantization
correlation 0.5
200 symbol sequence

bit clock

sy
m

bo
l c

lo
ck

Gauss−Markov source, correlation 0.5, 4 bit quantization, 200 symbols
Hamming source code, channel noise −1dB

100 200 300 400 500 600 700

20

40

60

80

100

120

140

160

180

200

10

20

30

40

50

60

bit clock

sy
m

bo
l c

lo
ck

Idem
5% redundancy added for soft synchronization

100 200 300 400 500 600 700

20

40

60

80

100

120

140

160

180

200

Fig. 4: Effect of the constraints induced by the suffix. Pos-
terior distribution P (k, n|Y) on pairs (k, n) for the joint
model for MS+SC without (top) and with (bottom) the p-
resence of suffixes. The horizontal axis is the bit clock and
the vertical axis represents the symbol clock.

Effect of soft synchronization symbols. Fig. 4 rep-
resents the posterior distribution P (k, n|Y) on pairs of
clock indexes (k, n), at the end of the estimation proce-
dure, i.e. after information from both models MS and SC
is introduced. The suffixes correspond to a redundancy
of 5% and are placed at symbol instants k = 50, 100, 150
(Gauss-Markov source of 200 symbols quantized on 4 bit-
s). The surrounding parallelogram represents the bound-
ary of the domain of possible values for pairs (k, n), and
the white line inside it is the true path for a particular se-
quence of symbols. Observe that the distribution concen-
trates at extremities : we have a “hard” synchronization
point at the beginning, and also at the end, because K
and N are known. Soft synchonization points behave in
a similar manner : they somehow “pinch” the distribution
P (k, n|Y) around the right value of n for k ∈ Is, since
desynchronized paths do not display the expected value
of the suffix for time k, and thus have to “pay” for an
assumed transmission error (whence a lower likelihood).

5 Experiments

To evaluate the performance of the soft synchronization
procedure, experiments have been performed on a first-
order Gauss-Markov source, with zero-mean, unit-variance
and different correlation factors. The source is quantized
with an 8 levels uniform quantizer (3 bits) on the interval
[−3, 3], and we consider sequences of K = 220 symbol-
s. The VLC source coder considered is based on a Huff-
man code, designed for the stationary distribution of the
source. The performance of the soft synchronization tech-
nique is compared against a source-channel turbo decoder
for the same amount (10%) of redundancy. The channel
code is a recursive systematic convolutional code of rate
1/2 and transfer function H(z) = (1 + z + z2 + z4)/(1 +
z3 + z4), punctured to the required redundancy. The sim-
ulations have been performed assuming an additive white
Gaussian channel with a BPSK modulation. The results
are averaged over 200 channel realizations.

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MAP VLC dec.
Soft synchro.
Turbo VLC−CC, 1 it.
Turbo VLC−CC, 4 it.

Eb/N0

BE
R

0 2 4 6

10
−4

10
−3

10
−2

VLC MAP dec.
Soft synchro. of VLC dec.
Turbo VLC−channel dec, 1 it.
Turbo VLC−channel dec, 4 it.,

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MAP VLC dec.
Soft synchro.
Turbo VLC−CC, 1 it.
Turbo VLC−CC, 4 it.

Fig. 5: Residual BER for different Eb/N0, for a Gauss-
Markov source of 220 symbols quantized on 3 bits, and
for different correlation factors ρ = 0.1 (left), ρ = 0.5
(middle) and ρ = 0.9 (right).

Fig.(5-6) compare the residual bit error rates (BER)
and symbol error rates (SER) for different source corre-
lation factors and for different channel Eb/N0, in order
to evidence the respective gains of the inner source cor-
relation and of the soft synchronization mechanism. One
can observe that even when the gain in terms of BER is
relatively small, the soft synchronization allows to reduce
significantly the SER. This evidences the capacity of the
procedure to fight against de-synchronizations, which is
then the essential cause of symbol errors. When compared
with the source-channel turbo decoder, the soft synchro-
nization provides lower SER for low values of Eb/N0, on a
range that depends on the source correlation (up to 5dB
for ρ = 0.1 and up to 1.5dB for ρ = 0.9). Indeed, when
the source correlation is high (ρ = 0.9), the SER is already
low, due to a proper exploitation of the inter-symbol corre-
lation for segmenting and estimating the bit stream. This
inter-symbol correlation is exploited in the estimation on
the MS model.

6 Conclusion

At low channel SNR, most of the errors in VLC decoding
come from de-synchronizations of the decoder. Therefore,

0 2 4 6
10

−3

10
−2

10
−1

10
0

S
E

R

Eb/N0

MAP VLC dec.
Soft synchro.
Turbo VLC−CC, 1 it.
Turbo VLC−CC, 4 it.

0 2 4 6
10

−3

10
−2

10
−1

10
0

Eb/N0

S
E

R

soft synrho.
MAP VLC dec.
Turbo CC−VLC, 1 it.
Turbo CC−VLC, 4 it.

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0

S
E

R

MAP VLC dec.
Soft synchro.
Turbo VLC−CC, 1 it.
Turbo VLC−CC, 4 it.

Fig. 6: Residual SER for different Eb/N0, for a Gauss-
Markov source of 220 symbols quantized on 3 bits, and
for different correlation factors ρ = 0.1 (left), ρ = 0.5
(middle) and ρ = 0.9 (right).

when considering re-augmenting the redundancy of the
stream, extra bits have to be dedicated to this specific
task. We have shown that the introduction of a priori
known symbols, which then serve as soft synchronization
points in the decoding, can be more efficient than error
correction codes. These symbols favor the likelihood of
paths corresponding to a correct segmentation of the bit
stream into codewords. Estimation based on the sequen-
tial use of the SC and MS models [7], [8] provides a nat-
ural framework for exploiting these soft synchronization
points.

References

[1] T.J. Ferguson and J. H. Rabinowitz, “Self-synchronizing
huffman codes,” IEEE Trans. On Information Theory, vol.
IT-30, no. 4, pp. 687–693, July 1984.

[2] W.M. Lam and A.R. Reibman, “Self-synchronizing
variable-length codes for image transmission,” in Proc.
IEEE Intl. Conf. on Accoustic Speech and Signal Process-
ing, ICASSP ’92, September 1992, vol. 3, pp. 477–480.

[3] Y. Takishima, M. Wada, and H. Murakami, “Reversible
variable length codes,” IEEE Trans. on Communications,
vol. 43, no. 4, pp. 158–162, April 1995.

[4] J. Wen and J. D. Villasenor, “Reversible variable length
codes for efficient and robust image and video coding,”
in Proc. IEEE Data Compression Conference, DCC, April
1998, pp. 471–480.

[5] R. Bauer and J. Hagenauer, “Turbo-fec/vlc-decoding and
its applications to text compression,” in Proc. Conf. on
Information Sciences and Systems, March 2000.

[6] A.H. Murad and T.E. Fuja, “Joint source-channel decoding
of variable length encoded sources,” in Proc. Information
Theory Workshop, ITW, June 1998, pp. 94–95.

[7] A. Guyader, E. Fabre, C. Guillemot, and M. Robert, “Joint
source-channel turbo decoding of entropy-coded sources,”
to appear in IEEE Sel. Areas in Com., 2001.

[8] A. Guyader, E. Fabre, and C. Guillemot, “Joint source-
channel turbo decoding of VLC encoded Markov sources,”
in Proc. GRETSI, sept. 2001.

