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Résumé – Ce papier décrit un algorithme de décodage conjoint pour une châıne de transmission composée d’une source
markovienne, d’un codeur de source et d’un codeur de canal. Le modèle global de la châıne n’est pas directement manipulable,
aussi s’oriente-t-on vers une procédure itérative traitant séparément chaque composant. On s’intéresse notamment aux difficultés
induites par les mots de code de longueur variable, et l’on montre qu’un décodage séquentiel des deux premiers composants est
optimal.

Abstract – We propose a joint decoding procedure for a chain composed of a Markov source, a source coder and a channel coder.
Global processing of the chain is intractable, hence we design an iterative procedure alternating use of each component. Special
attention is devoted to the variable length source coder ; we show that sequential soft decoding for the first two components is
optimal.

1 Why joint decoding?

Joint source and channel coding has gained considerable
attention as a viable alternative to the traditional separa-
ted approach for reliable communication over noisy chan-
nels. Joint coding is particularly suited to heavily constrai-
ned transmission systems in terms of complexity, frame
length, decoding delay, etc. This idea often relies on capi-
talizing on the source coder suboptimality (the so-called
“excess-rate”) to reduce the complexity of the channel co-
der. As a consequence, the receiver must decode the ob-
served noisy bitstream by using jointly the redundancy
introduced by the channel code and the residual redun-
dancy of the source.
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Fig. 1: Coding chain.

The wide usage of variable length codes (VLCs) for
source coding (i.e. data compression), which are very sen-
sitive to channel noise, has already motivated several pro-
cedures for robust joint decoding of variable length coded
streams [1, 2, 3, 4, 5, 6]. In this paper, we also address the
joint decoding problem along these lines, assuming the ge-
neral transmission chain of fig. 1. This chain is composed
of 1/ a Markov source, 2/ a variable length source coder
and 3/ a convolutional channel coder. We focus on the
analysis and modeling of the dependencies between the
variables involved in the complete source and channel co-
ding chain, by means of the Bayesian-network formalism.

Our starting point is a state space model of the three dif-
ferent components. These models are cascaded to produce
the bitstream sent over the channel, and the randomness
of variables is introduced by assuming a white noise in-
put of the cascade. The product of these three automata
induces immediately a state variable model of the bits-
tream : the triple of states – one state for each model –
appears to be a Markov chain, the transitions of which
generate the sequence of output bits, that are sent over
the channel. The observed output of a memoryless chan-
nel corresponds to noisy measurements of these bits, so
we are exactly in the usual HMM framework.

This nice picture suffers from two difficulties however.
First, the presence of two time indexes : the symbol clock
of the source model, and the bit clock of the channel coder
model. The translation is performed by the VLC source
coder. Since not all symbols have the same length, the
number of bits of the coded sequence (as well as the po-
sition of symbol boundaries) is a random variable, which
is quite unusual. We therefore have to solve a joint seg-
mentation + estimation problem. The second difficulty
is more classical : it comes from the fact that the state
space dimension of the product model explodes in most
practical cases, so that a direct application of usual es-
timation algorithms for HMMs is unaffordable, except in
trivial cases [3].

In this paper, we thus rely on properties evidenced by
serial turbo-codes to design an estimation strategy : ins-
tead of using the big product model, inference can be done
in an iterative way, making use of part of the global mo-
del at each time. This decreases complexity since smaller
state spaces are involved. We use this idea in the follo-
wing way, as it was already suggested in [5] and [6] : we
introduce an interleaver between the source coder and the



channel coder. This allows the construction of an iterative
soft decoder alternating between the channel coder model
and the joint model of the source + source coder 1, with
the bit clock as time index. But the idea can be pushed
further : why not splitting also the joint model source +
source coder? We demonstrate that this can be done wi-
thout invoking a turbo procedure. Due to the pointwise
translation of symbols into bits, there is no need of an in-
terleaver there. The soft decoding for this pair of models
can be performed optimally by using first the source coder
model, assuming the symbol source is white, and then in-
corporating the source model to take symbol correlations
into account. This property is obvious for constant length
source codes, but it is very surprising that it still holds for
VLCs. We end up with a turbo-like decoding algorithm
alternating the use of the two sources of redundancy in
the bitstream : the Markov source on the one hand, the
channel coder on the other hand. The intermediary VLC
source coder model is used as a translator of soft informa-
tion from the bit clock to the symbol clock.

2 Problem statement

Let S = S1...SK be the sequence of quantized source
symbols taking their values in a finite alphabet composed
of 2q symbols. The sequence S1 . . . SK is assumed to form
a Markov chain. Each symbol Sk is then coded into the co-
deword Ūk by means of a variable length code. The conca-
tenation of codewords yields the sequence U = U1...UN

of useful bits, where the length N is a random variable,
function of S. K and N are assumed to be known at the
receiver. The bitstream U is then fed to the channel coder
(punctured syst. conv. code), which yields the sequence
R = R1...RM of redundant bits. Notice that all random-
ness comes from S, since U and R are deterministic func-
tions of S. The bitstream (U, R) is sent over a memoryless
channel and received as measurements (Y, Z) ; so the pro-
blem consists in estimating S given the observed values
y = y1...yN and z = z1...zM , pointwise measurements on
useful and redundant bits, respectively.

3 Iterative source-channel decoder

We first build a joint model for the pair Markov source
(MS) + source coder (SC). We then design an iterative
“turbo” algorithm for joint decoding, which alternates use
of this joint model and of the channel coder (CC) model.

3.1 Joint model of the pair MS + SC

Let us first assume that S1 . . . SK are i.i.d. with distri-
bution Ps. For a non dyadic Ps, the best variable length
code (the Huffman code) has an average codeword length
that remains strictly above the lower bound H(Si) (at
most 1 bit above it). Therefore there remains some corre-
lation between the bits at the output of the source coder,

1. By contrast, recall that [6] is assuming an i.i.d. source, which
makes the source model useless and removes the difficulty of dealing
with two time indexes.

that can be exploited to help the segmentation + estima-
tion task at the receiver. This correlation can be modeled
by a bit clock HMM obtained by mapping the distribution
Ps on the codeword tree (fig. 2). This tree is composed of
2q leaves (one per symbol), and 2q − 1 inner vertices. The
state Xn of the model is a vertex ν of the tree, starting at
X0 = rootnode, and transitions from Xn to Xn+1 deter-
mine the value of bit Un. Of course, each leaf of the tree
is identified to the rootnode, in order to prepare for the
next symbol.
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Fig. 2: Codetree for symbols α1 . . . α4 with respective pro-
babilities (1

2 , 1
6 , 1

6 , 1
6 ) and codewords (0, 110, 10, 111), assu-

ming ↗ produces bit 1 and ↘ produces 0.

The resulting HMM is represented above the interleaver
on fig. 3. A constraint (or perfect observation) can be ad-
ded on the last state XN to ensure that the chain finishes
at a leafnode, i.e. produces an integer number of symbols.
However, to ensure also that the right number K of sym-
bols is obtained, one must extend the state variable Xn

with a symbol counter Kn augmented each time a new
leaf is reached. With this extended state (Xn, Kn), the
constraint at time N can guarantee that only sequences
of K symbols are compared. The price to pay is a bigger
state space.

Despite the help of these constraints, this inner code-
word redundancy is quite low. The symbol correlation due
to the MS model represents the major part of the redun-
dancy. To incorporate this information, one must consider
that the symbol Sk is actually not produced following the
stationary law Ps, but following P (Sk|Sk−1). This memory
effect is again introduced into the model by state augmen-
tation : we store in Xn the last symbol σ produced, hence
Xn is now a pair (σ, ν). Transition probabilities follow
accordingly : each P (Sk|Sk−1 = σ) is mapped on the co-
detree, and the value of σ in Xn selects the appropriate
mapping. Of course, the value of σ changes each time Xn

reaches a new leafnode.

3.2 Joint source-channel turbo-decoding

To finally incorporate the channel coder (CC), one can
follow the same lines : build a state representation of the
(for example) convolutional code producing bits R1 . . . RM

from U1 . . . UN , with state vector X ′
n, and aggregate Xn

and X ′
n to form a global HMM. This time, the state vector

becomes intractable, whence the idea to process the two
models MS+SC and CC separately. This is done following
the principle of serial turbo codes (fig. 3), provided an
interleaver is introduced in the coding chain.

In terms of Bayesian networks, connecting the two chains
creates N elementary cycles on the global graph. The
interleaver makes these cycles become long. Hence algo-
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Fig. 3: Introduction of an interleaver between the HMMs
of the pair MS+SC and CC to increase cycle lengths of
the Bayesian network.

rithms theoretically valid on tree-shaped nets (graphs)
still perform well since around each variable, the graph is
approximately a tree (see [7] and the extended paper [8]
for details).

Measurements are available on variables Un and Rm

(not represented on fig. 3). A belief propagation (BP) algo-
rithm can be used to estimate hidden variables (X, K), U,
X ′ and R. The organization of message circulations is free,
hence it can be performed in two sweeps along X ′, follo-
wed by transmission of (so-called “extrinsic”) information
towards U and pairs (X, K). Again message circulations
can be organized into two sweeps along pairs (X, K) be-
fore propagation towards X ′. This architecture exactly
amounts to computing a posteriori probabilities on va-
riables of each model alone, and to iterating between the
two models, with exchange of extrinsic information. This
exactly reproduces the decoding of serial turbo-codes. At
the last step, symbols Sk, or equivalently pairs (Xn, Kn),
are estimated with a Viterbi algorithm (sequence MAP),
since a simple local MAP on each pair may yield a non
valid bitstream. The overall complexity is much smaller
than for the aggregated model since few iterations are ne-
cessary, on reasonable state dimensions.

4 Splitting the joint model MS+SC

This section goes forward in the direction of separate
processing of the models. We now wish to process separa-
tely information from the source coder (SC) and from the
Markov source (MS). We show that iterations are useless
here, and that an interleaver is not needed.

4.1 Symbol clock model for MS+SC

A joint bit-clock model for the pair MS + SC is ap-
propriate for the iterative scheme of the previous section,
since the CC provides extrinsic information on bits Un

(or sets of bits). Nevertheless, a symbol clock model is
instructive. It takes the form depicted on fig. 4. The Mar-
kov chain Sk is displayed, together with the correspon-
ding codewords Ūk and measurements Ȳk. For the same
reasons as above, the state Sk is extended with a bit
counter Nk defined as the number of bits in Ū1 . . . Ūk :
Nk = L(Ū1 . . . Ūk) hence the pairs (Sk, Nk) is still a Mar-
kov chain. A constraint on the value of the counter Nk at
symbol time k = K guarantees that the model assigns a
null likelihood to symbol sequences that do not correspond

to N bits.
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Fig. 4: Symbol clock model of the pair MS+SC.

The symbol clock model and the bit clock model are
related in a simple manner. Let us represent the expanded
trellis of the bit clock model (fig. 5). The state value at
time n is composed of a number of symbols k and a pair
(σ, ν), so a node of the trellis corresponds to a 4-tuple
(n, k, σ, ν). By grouping nodes with the same value k on
the second component, one exhibits values of the symbol
clock model at time k. This representation is very useful
to translate posterior likelihoods on states of the bit clock
model to states of the symbol clock model, and conversely.
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Fig. 5: Trellis of the joint model for MS+SC. Horizontal
axis = bit clock, vertical axis = symbol clock.

4.2 Separate processing of MS and SC

The graph of the symbol clock model for the pair MS+SC
(fig. 4) is a tree, hence estimation of symbols from Y can
readily be performed on this graph by a BP algorithm or
a Viterbi algorithm. One structure for BP can be desi-
gned in the following way : one first estimates codewords
Ūk from measurements Ȳk, which gives estimates on pairs
(Sk, Nk), and then forward and backward propagations
are performed on the horizontal part to provide the right
posteriors P (Sk, Nk|Y ). This exactly amounts to 1/ es-
timating pairs (Sk, Nk) assuming they are independent,
and then 2/ taking the intersymbol correlation into ac-
count. In other words, this is a way of using separately
the two models of the MS and the SC, since independence
of symbols is first assumed.

Notice a particular feature of this procedure. The graph
of fig. 4 is actually a random tree, since the position of
measurements Ȳk depends on the value of variable Nk. Ho-
wever, one can prove that BP algorithms on random trees
remain valid, up to some extra technical difficulties [8].

Naturally, one would like to estimate the bitstream Ū1 . . .
ŪK using a bit clock model, in order to incorporate easily
extrinsic information from the CC. This is done in the
following way : a bitclock model is designed for SC as-
suming symbols are independent. This model works with
a small state space since Xn doesn’t need to store the



last symbol produced (σ). Nevertheless, counter Kn re-
mains. BP is first run on this SC model, then posteriors
on (Xn, Kn) are translated into posteriors at the symbol
clock, i.e. on pairs (Sk, Nk). Notice that these posteriors
are “biased” in some sense because the bitclock model as-
sumes independent Sk’s, the Nk’s are related one to the
next. But this bias can be easily corrected, to provide
the true P (Sk, Nk|Ȳk) which serve as input to BP on the
MS model. Final posteriors on P (Sk, Nk|Y ) can then be
translated back into posteriors on bits Un to prepare for
the next iteration of the turbo procedure.

In summary, up to some technicalities due to the pre-
sence of two time indexes, the pair MS+SC can be pro-
cessed separately. The final algorithm appears as a turbo
procedure incorporating in alternance redundancy due to
the MS model and to the CC, the intermediary SC model
playing the part of a translator of soft information bet-
ween bits and symbols. More details on algorithms can be
found in [8].

5 Experimental results

The joint decoding procedure has been evaluated on
a first-order Gauss-Markov source, with zero-mean, unit-
variance and correlation factor ρ = 0.9. The source is
quantized with a 4-bit uniform quantizer on the interval
[−3, 3], and we consider sequences of K = 200 symbols.
The VLC source coder is based on a Huffman code, desi-
gned for the stationary distribution of the source. The
channel code is a rate 1/2 recursive systematic convo-
lutional code with transfer function F (z)/G(z), F (z) =
1 + z + z2 + z4, G(z) = 1 + z3 + z4. Since very few errors
have been observed with rate 1/2, the code was punctu-
red to rate 3/4. A variable size interleaver is introduced
between the source coder and the channel coder. All simu-
lations have been performed assuming an AWGN channel.

Figure 6 provides the residual bit error rates (BER) and
symbol error rates (SER) for different channel Eb/N0. On
each plot, the top curve corresponds to an ML estimation
of the bitstream assuming independent bits (and no chan-
nel coding), followed by a hard Huffman decoding. On the
BER plot, the second curve corresponds to a MAP chan-
nel decoding, assuming an input of independent bits. The
third one is the result of the first iteration, where know-
ledge on symbol correlation and codeword structure has
been introduced. Successive curves show the extra gain of
iterations in the procedure, which depends on the degree
of redundancy present on both sides of the source coder.
In particular, when a white source is assumed, little gain
is obtained through iterations, since little information is
present on the left hand side of the interleaver : mainly
the remaining intra-symbol redundancy, and constraints
on K and N .

6 Conclusion

The turbo principle, revealed by turbo codes, can be ge-
neralized into the iterative use of factors of a big product
model. It is a promising strategy that has improved exis-
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Fig. 6: Residual BER (left) and SER (right) vs Eb/N0,
for successive iterations, with a Gauss-Markov source.

ting estimation algorithms in many problems, at almost
no cost. We have shown that this strategy performs well
in this specific problem of joint source-channel decoding.
However, its use is not always relevant : in the particular
case of the product model of the source + source coder,
one doesn’t need to separate factors by an interleaver. The
iterative use of the factors can be optimal. This advocates
a careful understanding of dependencies before choosing a
turbo strategy. Using the three models separately allows to
tune one component without dramaticaly changing the de-
coding algorithm. For example, the variable length source
coder can be made more robust to fight against desyn-
chronizations at low SNRs (see the companion paper [9]
in this conference).
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