
Orientation Based Second-Order Statistics for Texture

Description

Jean-Pierre Da Costa1, Christian Germain1,2, Pierre Baylou1

1Equipe Signal et Image – ENSEIRB and GdR Isis CNRS
BP 99, 33402 Talence cedex France

2ENITA de Bordeaux
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Résumé – Nous nous intéressons dans cet article à la description de textures directionnelles et nous proposons une nouvelle
approche, fondée sur les statistiques d’ordre 2 d’un champ d’orientations. Deux des principales propriétés haut-niveau condi-
tionnant la perception des textures sont abordées : la directionnalité et la périodicité. Notre méthode se fonde sur la mesure de
ressemblance entre deux orientations distantes d’un déplacement donné. Deux implantations de la mesure de ressemblance sont
présentées. La première est la Carte bidimensionnelle de Ressemblance d’Orientations ; elle peut être décrite en termes de lignes
et de points qui reflètent la périodicité ou la symétrie de la texture. La seconde implantation consiste en une Fonction Curviligne
de Ressemblance d’Orientations qui fournit une mesure de la ressemblance moyenne entre deux orientations le long d’une courbe
paramétrée et révèle une périodicité éventuelle. Les résultats expérimentaux sur textures synthétiques et naturelles montrent la
pertinence de notre approche pour une description haut-niveau de la texture.

Abstract – This paper focuses on directional textures and proposes a new statistical approach for the second order description
of an orientation vector field. We tackle two of the main high level properties that drive the perceptual grouping of texture:
directionality and periodicity. Our method is based on the measure of similarity between two orientation vectors separated by a
given displacement. We propose two implementations of the similarity measure. The first one is a 2-D Orientation Similarity Map
which can be described in terms of blobs and lines that reflect texture periodicity and symmetry. The second implementation
consists in a Curvilinear Orientation Similarity Function which provides a measure of the average resemblance between orientation
vectors along a parametrized curve and brings out periodicity. We also provide experiments on both synthetic and natural images
which show the relevance of our approach for the high level description of textures.

1 Introduction

Texture is undoubtedly one of the most important fea-
tures used in image analysis. It arises, either randomly or
deterministically, from the repetition of local patterns.
Statistical approaches and more particularly second or-
der statistics have been widely reported in literature and
have proved through years to be efficient for texture clas-
sification or segmentation. Textural features such as those
based on cooccurrence matrices [8] or grey level difference
histograms [3] provide measures of semantic notions as
contrast, coarseness, randomness or directionality.
Among the high level features which drive the perceptual
grouping of textures, three of them have been identified
as fundamental [11]: directionality, periodicity and struc-
tural complexity. Unfortunately, the extraction of such
features often rely on the distribution of pixel intensity
values [1][3]. Several authors [6][7] brought out the fact
that grey level based statistical methods are not suited
to structural textures. These textures arise from an ar-
rangement of non-elementary local patterns which can be
described in terms of shape, size or orientation. For in-
stance, cellular textures are better characterized by means
of shape features than they would be by grey level based
approaches.

This paper focuses on directional textures i.e. made up of
elongated patterns. On such textures, directionality is ob-
viously one of the most important features to be studied.
That is the reason why we propose a new approach based
on the texture orientation vector field and its second order
statistical properties.
As we will see in section 2, the orientation vector field can
be obtained by any gradient-based approach and consists
of an orientation map and its associated coherence map.
An interpolation technique is also given.
In section 3, an orientation resemblance function is pro-
posed. This resemblance function is then used to draw up
an Orientation Similarity Map or OSM which gives a sec-
ond order description of texture. The OSM is exercized
on both synthetic and Brodatz textures and is compared
with grey level based interaction maps.
Finally, section 4 will provide an alternate derivation of
the similarity measure: the Curvilinear Orientation Sim-
ilarity Function or COSF. The COSF is suited for the
description of elongated patterns and gives a measure of
orientation correlation along a parametrized curve. This
method is used to characterize composite material images
taken from electronic microscopy and more particularly to
retrieve the period and magnitude of textural ripple.



2 The Orientation Vector Field

2.1 Orientation estimation methods

Various techniques for orientation estimation have been
reported in litterature. For instance, Bigün [2] set the
problem of orientation detection in the least square sense,
fitting an axis to the local Fourier Tranform. Kass and
Witkin [9] grounded their algorithms on the difference of
two Gaussians and on the statistical theory of directional
data [10]. Such statistical methods raise the problem of
the scale of analysis: one has to keep in mind the need
for a local orientation estimate which is fitted to the size
of the patterns involved in the texture. For this reason,
statistics must be handled with care so that the orienta-
tion estimates remain local enough.
Very local operators (e.g. Prewitt’s or Sobel’s gradients)
or size-adaptive operators(e.g. Deriche’s gradient or Gra-
dient of a Gaussian) are more likely to give good esti-
mates of local orientations than larger scale statistical ap-
proaches. In recent works, Da Costa and al. [5] have also
proposed a near optimal approach for fitting an orienta-
tion operator to the size of the textural patterns.

2.2 A discrete orientation map

Let I : Z2 → R denote the image. On every pixel (i, j) of
I, we can define an orientation vector vd

θ (i, j) which con-
sists of an argument θd(i, j) and a modulus ηd(x, y).
θd is the discrete two-dimensional orientation map. Ori-
entation being π-periodic, we restrict its values to [0, π[:

θd : Z2 → [0, π[
(x, y) → θd(x, y). (1)

ηd is the corresponding coherence index map:
ηd : Z2 → [0, 1]

(x, y) → ηd(x, y). (2)

The coherence or confidence index measures the degree
to which a texture can be considered locally oriented. For
example, this confidence index can be based on the compu-
tation of a directional variance upon a small neighborhood
of the current pixel [9][10].

2.3 Interpolating orientations

Let interpolate the orientation and the coherence discrete
maps on any point of real coordinates: (u, v) ∈ R2.

x2 = x1 + 1
y2 = y1 + 1

Fig. 1: Interpolating neighborhood

Let {(θkl, ηkl)}k,l∈{1,2} denote the orientations and coher-
ence indices of the pixels surrounding (u, v). Then, using
the Statistics of Directional Data [10], the orientation vec-
tor field can be interpolated from the neighboring pixels:

θ(u, v) = θu,v = 1
2 arg V

η(u, v) = ηu,v = |V | 12 .
(3)

where V =
∑

kl wklη
2
kle

2jθkl .
The wkl are the weights associated to each neighbor and
are based on the distance to the point (u, v):

wkl = (1− |u− xkl|) · (1− |v − ykl|). (4)

3 The Orientation Similarity Map

3.1 The Resemblance Function

In order to construct an orientation similarity map, we
have to define an orientation resemblance function R.

R : [0, π[×[0, π[ → [0, 1]
(θ1, θ2) → R(θ1, θ2).

(5)

R must be a decreasing function of the orientation differ-
ence ∆ defined by:

∆(θ1, θ2) = inf(|θ1 − θ2|, π − |θ1 − θ2|)). (6)

The first resemblance function we propose is the cosine
function:

R1(θ1, θ2) = cos(∆(θ1, θ2)), (7)

where ∆ keeps the value of the difference between 0 and
π
2 . On textures where orientation variations are hardly
discernable, the cosine function would not be suited be-
cause its first derivative is null at zero. In order to stress
small orientation differences, let define R2 by:

R2(θ1, θ2) = κ · e−λ·∆(θ1,θ2) + γ, (8)

where κ, λ and γ allow to adapt the sensitivity to small
differences and ensure:

{
R2(θ, θ) = 1
R2(θ, θ + π

2 ) = 0.
(9)

3.2 The Orientation Similarity Map

Let define the Orientation Similarity Map or OSM by:

MS : Z2 → [0, 1] (10)

and

MS(α, β) =

∫∫
I

ηx,yηx+α,y+βR(θx,y, θx+α,y+β)dxdy

∫∫
I

ηx,yηx+α,y+βdxdy
.

(11)
MS(α, β) measures the average resemblance over the im-
age I between two orientation vectors separated by a dis-
placement (α, β). Low values of MS(α, β) reveal a possible
periodicity on the orientation vector field.
Figure 2a represents a rippled texture. Figures 2b and
2c show the corresponding OSMs computed using the re-
semblance functions R1 and R2 respectively. The origin
is located at the center of the map.
OSMs can be interpreted in the same way as interaction
maps [3]: white blobs and lines reveal the existence of
periodicities or symmetries in the orientation vector field.



(a) (b) (c)

Fig. 2: Experiments on synthetic textures.

3.3 Results on Brodatz textures

The OSM method has been exercized on two natural tex-
tures from Brodatz’s album. Textures d17 and d34 are
presented on figure 3. For comparison, we provide the
interaction maps based on the mean of the grey level dif-
ference histogram: MGLDH-based interaction maps [3].
Figure 3 shows that the interpretation is much more eas-
ier for OSMs than for interaction maps. For instance, on
texture d34, the grey level information is contained in the
edges between black cells. These edges are very thin and
their grey level is strongly scattered. Thus, as grey level
carries very few information, grey level based approaches
are inadequate. On the contrary, such textures can be
characterized meaningfully through their orientation vec-
tor field. That is why the OSMs reveal more information.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Experiments on Brodatz textures: (a) and (b) tex-
tures d17 and d34, (c) and (d) MGLDH-based interaction
maps, (e) and (f) OSMs based on R2.

4 Curvilinear 2nd order statistics

In this section, we deal with directional textures which
consist in an arrangement of elongated patterns. On such
textures, it is useless to extract 2nd order statistics through
a 2-D approach. Indeed, elongated patterns can be de-
scribed by crest lines or level curves running along them.
If we can extract such level curves [4], then it is sufficient
to study the second order statistics of the orientation vec-
tor field along these curves. Moreover, the curvilinear im-
plementation will appreciably reduce the computational
cost. So, let introduce the curvilinear likeness function,
which is defined on any parametrized curve.

4.1 The Curvilinear Orientation Similar-
ity Function

Let C denote a parametrized curve:
C : [0, L] → R2

s → (x(s), y(s)), (12)

where s is the arc length and L the total length of the
curve.
Let define the Curvilinear Orientation Similarity Function
or COSF by:

fCS : R → R+ (13)

and

fCS (t) =

∫
C

ηs · ηs+t ·R(θs, θs+t) · ds

∫
C

ηs · ηs+t · ds
. (14)

θs = θ(x(s), y(s)) and ηs = η(x(s), y(s)) denote respec-
tively the orientation and the coherence at arc length s.
The definitions of orientation and coherence at any arc
length rely on the interpolation rules defined in section 2.
fCS (t) measures the average resemblance along the curve C
between two points which are separated by a displacement
t. Low values of fCS (t) reveal a periodicity on the image.

4.2 Results on synthetic textures

Figure 4a shows a level curve on a directional texture. In
figure 4b, we give a representation of fCS (t) as a function
of curvilinear distance.

(a) (b)

Fig. 4: COSF (b) computed on a rippled texture (a).

The similarity function appears to be periodic: it reflects
the presence of ripple along the pattern. The period of the
curve is the curvilinear period of the ripple phenomenon
whereas the depth of the minima is directly related to the
ripple magnitude.



4.3 Application to material images

The COSF has been exercized on natural textures taken
from transmission electronic microscopy. The images of
figure 5 show atomic layers of composite materials ob-
served at a microscopic scale. The extraction of the pe-
riod and the magnitude of the undulation of layers is of
great importance for the physical interpretation of those
textures.

Material 1 Material 2

Fig. 5: Composite material images.

We choose to characterize the textural patterns by using
the level curves of the image. For the level curve extrac-
tion, we implemented the algorithm presented in [4]. For
each extracted level curve, we drew the Curvilinear Ori-
entation Similarity Function. By a regression algorithm,
the period and the magnitude of the undulation have been
estimated. The occurrences of the period-magnitude cou-
ples on two different materials are reported on the bi-
dimensional histograms of figure 6.
The distributions of the occurrences for the two images
are quite different. They reflect the results obtained for
a great number of images and turn out to confirm the
hypotheses made by physicists.

Material 1 Material 2

Fig. 6: Tables of Period-magnitude occurrences: period
on the x-axis, magnitude on the y-axis.

5 Conclusion

In this paper we have proposed a new and efficient ap-
proach for the characterization of directional textures. This

approach gives a second order description of the texture
orientation vector field and is based on the computation of
an orientation resemblance function. It has been derived
into two different implementations.
The first one is the Orientation Similarity Map which
measures the average resemblance between two orientation
vectors separated by a given displacement. Experiments
on synthetic and natural images have shown the relevance
of the OSM for the characterization of two-dimensional
periodicity and directionality.
The second implementation consists in the Curvilinear
Orientation Similarity Function. The COSF computes
second order statistics of the orientation vectors along a
parametrized curve. This method was exercized on com-
posite material images. Associated to a level curve extrac-
tion algorithm, it proved to be efficient and suited for the
extraction of the period and magnitude of texture ripple.
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