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R�esum�e {
Nous analysons ici une solution it�erative et sous-optimale au probl�eme de l'�egalisation et du d�ecodage conjoints, solution appel�ee

Turbo-�egaliseur. Nous observons l'�evolution de la variance de l'erreur d'estimation des symboles (transmis sur le canal) au cours

du processus it�eratif, ce qui constitue l'analyse de convergence du Turbo-�egaliseur. Ceci nous permet de pr�edire les performances

asymptotiques (i.e. lorsque le Turbo-�egaliseur a converg�e) mais aussi le point de d�eclenchement du ph�enom�ene Turbo.

Abstract {

We investigate a sub-optimal iterative receiver for joint equalization and decoding called Turbo-equalizer. We view the evolution

of the error variance of the transmitted symbols through the iterative processing, obtaining convergence analysis. This allows

us to predict the asymptotic performance (when the Turbo-equalizer has converged) but also the trigger point observed in its

performance.

1 Introduction

In high rate communication, where the transmitted signal
is subject to intersymbol interference (ISI), we may use
equalization to reduce the e�ect of ISI and channel cod-
ing to correct remaining errors. A conventional equalizer
does not make use of the redundancy introduced by the
channel coding. Equalization and decoding are disjoint
which is not optimal in the sense of the minimization of
the error probability. Since optimal joint equalization and
decoding is an NP-complete problem, we consider a rele-
vant trade-o� between complexity and performance: the
Turbo-equalizer, �rst proposed in [6] and studied in [10].
Our goal is to analyze the evolution of the e�ective er-
ror variance through the iterative processing involved in
the Turbo-equalizer, following the approach described in
[1]. This may allow prediction of the performance of the
Turbo-equalizer, without a need to run the iterative pro-
cessing.

2 Turbo-Equalizer

Consider the transmitter described in Figure 1. The dis-
crete channel is characterized by its impulse response hn.
The samples of the received signal can be written as rn =
h ? dn +wn, where ? stands for the convolution and wn is
a white gaussian noise.
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Fig. 1: Transmitter.

The Turbo-Equalizer is implemented in a modular pipelined
structure with P identical iterations. With reference to
Figure 2, each module consists of the concatenation of a
Soft Input/Soft Output equalizer, a soft de-mapper (sym-
bol to bit), a deinterleaver, aMaximum a posteriori (MAP)
decoder, an interleaver and a soft re-mapper (bit to sym-
bol). The output of iteration p together with the channel
output is input to iteration p + 1. Decoding is carried
out by using the MAP algorithm [2]. Given the obser-
vation and prior probabilities, the decoder computes the
marginal log-likelihood of the coded bits in the form of
~�(cm) = ln

�
P (cm=1jy)
P (cm=0jy)

�
. After deinterleaving, an esti-

mate dp
n
of the conditional mean value of the symbols dn

is calculated as in [6]. In the case of binary modulation
(BPSK): dp

n
= P(cm = 1 j y)�P(cm = 0 j y).

As shown in Figure 3, the equalizer used here is the
Interference Canceler (IC) proposed in [6]. It consists of
two �lters P (z) and Q(z) and is fed by both the channel
output, rn and the output of the previous module, dp�1

n
.

Note that the equalizer of the very �rst iteration is a De-
cision Feedback Equalizer (DFE) that just processes the



equalizer

MAP

decoder

M-ary

binary

converter

d
p

n

computation
interleaver deinterleaver

rn = h ? dn + wn

d
p�1

n
= �dn + "n

yn = �dn + �n

Fig. 2: Module p of the Turbo-equalizer.

output of the channel, since d0
n
does not exist. Minimiza-

tion of the mean square error MSE = E[j yn � dn j
2] over

the coeÆcients of the �lters P and Q under the constraint
q0 = 0, when Q is fed by the dn, yields the �lters in the
form [6]:
P (z) = �H�(z�1�), Q(z) = �(H(z)H�(z�1�)� h(0))

where H(z) =
P

i
hiz

�i, H�(z�1�) =
P

i
h�
i
zi,

h(0) =
P

i
jhij

2 and � =
�
2

d

�
2

d
h(0)+�2w

.
� stands for conjugation whereas �2

d
and �2

w
stand respec-

tively for the transmitted symbol power and thermal noise
power. P is the �lter matched to the channel H and
Q+�h(0) its autocorrelation. Q is used to remove the ISI
caused by previous and future detected symbols. We have
shown earlier [10] that it results in complete elimination
of ISI, provided that the previous and future decisions are
correct.
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Fig. 3: Equalizer in the module p > 1.

3 Convergence Analysis

Analysis of iterative decoding has recently received an in-
creased attention as a method for designing codes and
investigating their related decoding algorithm. In [9], the
authors consider the evolution of the density functions of
the message passed through the iterative decoding pro-
cess. Under the assumption of a consistent Gaussian den-
sity, the density evolution can be reduced to a one-dimensional
quantity, namely the mean [3] or equivalently the SNR [5].
However, this analysis is restricted to the concatenation
of two codes. A more general framework [1] has been
proposed for analyzing the iterative solution to any joint
estimation/detection problem by representing the Turbo-
iteration as the evolution of e�ective error variance. Fol-
lowing the approach of [1], we study the evolution of the
e�ective error variance through the iterative process in-
volved in the Turbo-equalizer.
Note that the Turbo-equalizer presented above gives an

estimate of the transmitted symbol dn in two places: the
equalizer output yn and decoder output dp

n
. Let us now

split the Turbo-equalizer in two blocks and write the in-
put and output of each block explicitly as estimates of
dn. This leads to the scheme shown in Figure 2. The

errors "n and �n contain both remaining ISI and noise re-
spectively at the input and output of the equalizer. For
tractable analysis, we follow the approach described in [1]
and represent the Turbo iteration as the evolution of error
variances on dn.

3.1 Model and principle

The Turbo-equalizer is fed by the output of the channel:

rn = h ? dn + wn;

with normalized thermal noise variance ��2
w
=

�
2

w

h(0)�2d
:

The estimates of dn are either:

dp�1
n

= �dn + "n;

with e�ective normalized error variance ��2
"
=

�
2

"

�2�
2

d

; or

yn = �dn + �n;

with e�ective normalized error variance ��2
�
=

�
2

�

�2�
2

d

:

Considering input variances ��2
w
and ��2

"
to the IC block,

we compute the output error variance ��2
�
. Under the as-

sumptions that � = 1 and that wn and "n are independent,

��2
�
= g��2

w

�
��2
"

�
= ��2

w
+

�h
h(0)2

��2
"
;

where �h is obtained from the autocorrelation of the au-
tocorrelation h(n) of the channel hn where the central
term is suppressed:

�h

h(0)2
=

1

h(0)2

 X
n

h(n)h(�n)
�

!
� 1; (1)

which is a measure of the channel dispersion. Note that
the larger the slope of g��2

w
is, the larger the output vari-

ance is and the tougher the channel is. So we can de�ne a
\tough" channel, when processed by the Turbo-equalizer,
as a channel with large �h

h(0)2
.

The decoder updates the error variance ��2
"
via the func-

tion f :
��2
"
= f

�
��2
�

�
:

f may be obtained through simulation, or bounded. An-
alytical characterization of f is diÆcult and we focus on
understanding the Turbo iteration, given f via simulation
over the AWGN channel.
We can now test the Turbo-equalizer convergence by

plotting the output variance of the decoder ��2
"
versus the

input variance ��2
�
(that is to say f) and the input variance

of the equalizer (IC) ��2
"
versus the output variance ��2

�
for

a given thermal noise variance ��2
w
(that is to say g�1��2

w

).

One Turbo iteration corresponds to the recurrence:

��2 p+1
"

= f
�
��2 p+1
�

�
= f Æ g��2

w

�
��2 p
"

�
:

Fixed points of f Æ g��2
w
and their stability represent the

asymptotic convergence points of the processing. Given a
�xed point x, the condition for stability is:����f Æ g��2

w

�0
(x)
��� < 1;



which depends indeed on ��2
w
.

Note that, when convergence of the Turbo-equalizer is
achieved and under gaussian assumption of the di�erent
errors, the variance output of the decoder of the �xed
point can be easily related to the performance in terms of
Bit error rate. So, this allows to predict the �nal perfor-
mance of the Turbo-equalizer. We are now interested in
the analysis of the performance.

3.2 \Easy" channels

Let us consider \easy" channels, i.e. channels with small
dispersion coeÆcient (1), for instance Porat and Friedlan-
der's channel [7] with dispersion 0:73 in Figure 4. It also
corresponds to a channel with the same minimal distance
as the AWGN one. We use here a 64-state recursive sys-
tematic code [133,171].
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Fig. 4: Iterative process of the Turbo-equalizer (Porat
and Friedlander's channel). Starting the �rst iteration at
the arrow setting.

In practice, we have observed the existence of a sta-
ble �xed point for these \easy" channels. Moreover sim-
ulations show that the Turbo-equalizer tends to the per-
formance of the coded sequence transmitted over AWGN
channel at high SNR but not at low SNR [10]. This can
be easily explained with the convergence analysis (see Fig-
ure 5). Given a noise variance ��2

w
, the decoder gives an

output error variance plotted by +. As for the Turbo-
equalizer, it tends to the �xed point �, which leads to an
extra variance � for the Turbo-equalizer at high �2

w
.
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Fig. 5: Convergence analysis.

3.3 \Tough" channels

In this section, we consider \tough" channels (Proakis B
and C [8, page 616]) such as the coeÆcient (1) of which is
respectively 0:94 and 2:06. It also corresponds to channels
with smaller minimal distance than the AWGN one. For
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Fig. 6: Accuracy of the penalized curve of the decoder
and the simulated ones.

these channels, the characteristic of the decoder during
the Turbo simulation di�ers from the function f simulated
above for an AWGN channel. In spite of this mis-matched
decoding, ��2

"
may be further used to predict the perfor-

mance of the Turbo-equalizer (without carrying out the
simulation). We propose to penalize the input variance of
the decoder, ��2

�
, with the ratio between the minimal dis-

tances of the dispersive and of the AWGN channel, which
de�nes the channel loss, a:

��2
"
= f

 
��2
�

d2min dispersive channel

d2min AWGN channel| {z }
a

!
; where a � 1:

The accuracy of the prediction depends on how the penal-
ized function matches the simulated ones (see Figure 6).
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Fig. 7: Simulated performance of the Turbo-equalizer:
trigger point at 6 dB with MAP equalizer at the 1st iter-
ation.

We have shown earlier ([10] and Figure 7) that there
is a trigger point in the iterative process, followed by a
breakdown e�ect. After the trigger point, the BER de-
creases steeply as a function of the decoding step p. As
we run the iterative process and plot the results in terms
of error variances, we observe that the trigger point cor-



responds to the limit of convergence to a �xed point. In
the following, we use our analysis in order to predict this
trigger point.
The analysis for the Proakis B channel shows that there

is a limit of the stability of the �xed point that may be
related to the trigger point (1.5 to 2 dB for simulation
to be compared with 3 dB for analysis, see Figure 8.a).
Also shown is the prediction of the trigger point for chan-
nel Proakis C. For this channel, note that the �xed point
does not always exist, depending on ��2

w
. The limit of ex-

istence of this �xed point occurs at 6.5 dB as is shown
in Figure 8.b and matches reasonably well with the trig-
ger point (6 to 10 dB for simulation, depending on the
equalizer of the �rst iteration). Note that when the �xed
point doesn't exist, the slope of f Æ g��2

w
is greater than 1

and the output variance after one iteration is greater than
the input variance. So, before the trigger point, BER in-
creases as a function of the decoding step p as is shown in
Figure 7.
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Fig. 8: Prediction of the trigger point.

4 Conclusion

We analyzed the error variances and the evolution of these
variances through the Turbo-equalizer, obtaining a con-
vergence analysis. Because of mis-matched decoding dur-
ing the iterative process, we had to penalize the decoder
with the ratio between the minimal distances of the dis-
persive and of the AWGN channel. This allowed us to pre-
dict the trigger point observed in Turbo-equalizer's per-

formance without having to run the complete simulation.
Depending on the channel, the prediction is based on ei-
ther the limit of existence of the �xed point or the limit of
stability of this point (if the �xed point exists). Based on
this analysis, we propose a de�nition of a \tough" channel,
when processed by the Turbo-equalizer.
The analysis of the Turbo-equalizer, we just proposed,

is complete when the distribution of the estimates of the
transmitted symbol dn (given dn) is a white gaussian one.
In the tough cases, we observed on simulation that the
noise at the output of the IC is white but not gaussian
(using the D'Agostino's test [4] based on third and fourth
order statistics). This may explain why the decoder's per-
formance is reduced.
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