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Résumé � Dans cet article, un algorithme optimal d'estimation semi-aveugle de canal à évanouissements pour systèmes multi-

porteuses est proposé. Cet algorithme réalise une estimation itérative du canal multiplicatif au moyen du critère du maximum a

posteriori, en utilisant l'algorithme `Expectation-Maximization'. Cet algorithme nécessite une représentation appropriée du canal

multiplicatif bi-dimensionel temps-fréquence vu par les symboles multiporteuses transmis. Cette représentation est garantie par

le théorème de décomposition orthogonale de Karhunen-Loève basé sur la fonction de corrélation temps-fréquence du canal.

Abstract � We propose in this paper an optimum semi-blind fast fading channel estimation algorithm for multicarrier systems.

This algorithm performs an iterative estimation of the multiplicative channel according to the maximum a posteriori criterion,

using the Expectation-Maximization algorithm. It requires a convenient representation of the two-dimensional frequency-time

discrete multiplicative channel seen by all multicarrier transmitted symbols. This representation is guaranteed by the Karhunen-

Loève expansion theorem based on the spaced-frequency spaced-time correlation function of the channel.

1 Introduction

We propose in this paper an optimum block-by-block two-
dimensional semi-blind channel estimation algorithm for
multicarrier systems. This algorithm performs an iter-
ative channel estimation according to the maximum a
posteriori (MAP) criterion, using the Expectation-Maxi-
mization (EM) algorithm [1, 2]. It uses pro�tably both pi-
lot (or reference) symbols and information-carrying sym-
bols in the optimization of channel estimation. It can also
take into account the coded structure of the transmitted
information-carrying symbols for an additional improve-
ment of its performance. It requires a convenient represen-
tation of the multiplicative frequency and time selective
fading channel using a Karhunen-Loève (KL) expansion
[3] of the time-variant transfer function of the channel.
This expansion relies on the spaced-frequency spaced-time
correlation function of the two-dimensional fading channel
[3]. The evaluation of the performance of this algorithm
is based on a multicarrier system with reception diversity.

2 Transmitted signal characteristics

We consider a block-by-block two-dimensional channel es-
timation for multicarrier systems using PSK-modulated
symbols. Each block is composed of N symbols amn with
energy Emn and two-dimensional frequency-time position
(mF;nT ), where F and T are respectively the frequency
and time spacing between two adjacent symbols. These
symbols take their values from an arbitrary PSK alphabet
set 
 and are composed of ND data symbols with (two-
dimensional) indices in the set SD and NP pilot symbols
with indices in the set SP .

3 Multiplicative two-dimensional

fading channel characteristics

We consider a multicarrier system with L decorrelated di-
versity branches. The time-variant transfer function [3]
of the frequency and time selective fading channel seen
at a given branch is characterized by its spaced-frequency
spaced-time correlation function (SFSTCF) � (�f;�t).
For a channel scattering function [3] with classic Doppler
power spectrum and exponential multipath intensity pro-
�le, the SFSTCF, with average power � (0; 0), is given by

� (�f;�t) = � (0; 0)
J0 (�Bd�t)

1 + j2�Tm�f
;

where Bd and Tm are respectively the Doppler and mul-
tipath spreads of the channel and J0 (:) is the 0th-order
Bessel function of the �rst kind.

4 Signal model at the output of the

receiver matched �lter

As depicted in �gure 1, the multicarrier receiver is com-
posed of L diversity branches provided by spatially decor-
related receiving antennas. We assume that the lth diver-
sity branch output signal associated to the symbol amn
can be written as

Rl
mn = clmnamn + N l

mn;

where clmn is the discrete channel gain factor of the lth

branch seen by the symbol amn and N l
mn is a complex

AWGN with variance N0. The gain factors are indepen-
dent from one diversity branch to the other but frequency
and time correlated within the same branch.
Let (:)

T
denote the transpose operator. For notational

convenience, we introduce the one-to-one indexing func-
tion � (k) = (m (k) ; n (k)) between the one-dimensional



Fig. 1: Block diagram of the proposed receiver.

indexing set fkg
N�1
k=0 and the two-dimensional indexing set

SD[SP . We also introduce for each transmitted block the
vector

R
l =

�
Rl
�(0); R

l
�(1); : : : ; R

l
�(N�1)

�T
of lth branch matched �lter outputs. Let also j:j denote
the absolute value operator. To get rid of the amplitude
dependence of each PSK modulated symbol amn on its in-
dex (m;n), we introduce the normalised block transmitted
vector

A =
�
A�(0); A�(1); : : : ; A�(N�1)

�T
;

with A�(k) = a�(k)
���a�(k)�� . Based on this, we can rewrite

the components of the lth branch received vector Rl as

Rl
�(k) = Cl

�(k)A�(k) +N l
�(k);

where Cl
�(k) is the � (k)

th component of the equivalent dis-
crete multiplicative fading channel vector

Cl =
���a�(0)�� cl�(0); ��a�(1)�� cl�(1); : : : ; ��a�(N�1)�� cl�(N�1)�

of the lth branch.

5 Convenient representation of the

discrete multiplicative fading

channel

For MAP channel estimation, we need a convenient repre-
sentation of the equivalent discrete fading channel seen at
each diversity branch. This representation is based on a
discrete version of the KL orthogonal expansion theorem
[3].

Proposition The lth diversity branch equivalent dis-
crete fading channel vector Cl can be expressed as

C
l =

N�1X
k=0

Gl
kBk;

where fBkg
N�1
k=0 are the orthonormal eigenvectors of the

equivalent discrete channel covariance matrix

F = E
�
C
l
C
l�T
�
and

�
Gl
k

	N�1
k=0

are independent com-
plex zero-mean Gaussian random variables with variances
equal to the eigenvalues f�kg

N�1
k=0 of the Hermitian matrix

F. The (p; q)th entry of this matrix is given by

Fpq = �
�
(m (p) �m (q))F; (n (p)� n (q))T

�q
E�(p)E�(q):

The vectors
�
G
l
	L�1
l=0

, whereGl =
�
Gl
0; G

l
1; : : : ; G

l
N�1

�T
,

are referred to as the convenient representation of the
equivalent discrete multiplicative channel seen at the out-
put of the L diversity branches.

6 Maximum a posteriori discrete

channel estimation

The MAP estimate
nbGl

oL�1
l=0

is given by

nbGl
oL�1
l=0

= arg max
fGlgL�1

l=0

p
��
G
l
	L�1
l=0

��� �Rl
	L�1
l=0

�
:

Directly solving this equation is an intractable problem.
However, the solution can be reached iteratively and eas-
ily by means of the EM algorithm. Given the L received

vectors
�
R
l
	L�1
l=0

, the EM algorithm starts with an initial

guess
�
G
l(0)
	L�1
l=0

of
�
G
l
	L�1
l=0

. As shown in �gure 1, the

evolution from the estimate
�
G
l(d)
	L�1
l=0

to the new esti-

mate
�
G
l(d+1)

	L�1
l=0

is performedD times via the auxiliary
function of the EM algorithm.

Proposition The pth component of the lth branch rees-
timate Gl(d+1) is explicitly given by

Gl(d+1)
p = wp

N�1X
k=0

Rl
�(k) � X

A2


AP

�
A�(k) = A

�
R
l
	L�1
l=0

;
n
G
l(d)
oL�1
l=0

�!�
B�
p�(k);

where Bp�(k) is the k
th component of Bp and

wp =
1

1 + N0/�p
:

When the normalized transmitted vector A is coded,
the conditional probabilities of A�(k) can be computed by
means of the Bahl algorithm [4].
For uncoded information-carrying symbols with centro-

symmetric PSK modulation, we can use

Gl(0)
p = wp

X
�(k)2SP

Rl
�(k)D

�
�(k)B

�
p�(k)

as pth component of the initial guess Gl(0), where D�(k) is
the value taken by the pilot symbol A�(k), � (k) 2 SP .
Let Re (:) denote the real part operator. For uncoded

BPSK modulated symbols, the previous expression of



G
l(d+1)
p can be simpli�ed into

Gl(d+1)
p =

wp

0@ X
�(k)2SD

Rl
�(k) tanh

h
2Re

n
�(d)
�(k)

oi
B�
p�(k)

+
X

�(k)2SP

Rl
�(k)D

�
�(k)B

�
p�(k)

1A ;

where

�
(d)
�(k) =

1

N0

L�1X
l=0

Rl
�(k)

 
N�1X
p=0

Gl(d)�
p B�

p�(k)

!
:

7 Simulation results

We present below some simulation results for a 16-carrier
OFDM system with BPSK modulated symbols. We re-
strict our investigation to time-frequency blocks with 256
data and pilot symbols and either 16 or 4 pilot symbols per
block for channel estimation. The positions of these pilot
symbols within each time-frequency block are speci�ed in
Figure 2.

Fig. 2: Pilot symbols positions within a time-frequency
block for 16 (a) and 4 (b) pilot symbols.

Fig. 3: Bit Error Rate for 16 pilots, BdTm = 10�3 and
L = 2.

For illustration, we assume that all data and pilot sym-
bols have a common energy E. Moreover, we evaluate
the performance of our algorithm for three severe chan-
nels with BdTm = 10�3, 10�4 and 10�6, and L = 2 and 4
diversity branches.

Fig. 4: Bit Error Rate for 16 pilots, BdTm = 10�3 and
L = 4.

Fig. 5: Bit Error Rate for 16 pilots, BdTm = 10�4 and
L = 2.

For the sake of simplicity, we restrict the number of iter-
ations D carried by our algorithm to 5. This number is
deemed to be su�cient for almost reach the best asymp-
totic achievable raw BER.
The performance of our algorithm is compared to two
benchmarks based on the MMSE criterion. The �rst bench-
mark, referred to as MMSE 1, carries out a linear channel
estimation based on a plane surface interpolation of the
channel seen at the pilot symbols positions. The second
benchmark, referred to as MMSE 2, carries out channel
estimation by interpolating the channel seen at the pilot
symbols positions with a constant plane surface.
The performance of our algorithm is also compared to the
simulated and theoretical performance of the hypothetical
receiver with perfect channel state information (CSI). We
recall that the theoretical performance of this receiver is
given by the bit error probability [3]

Pe =

�
1� �

2

�L L�1X
l=0

�
L � 1 + l

l

��
1 + �

2

�l
of the uncoded BPSK over a Rayleigh multipath fading
channel with L branches of diversity, with

� =

s
E=N0L

1 +E=N0L
:

As shown in Figures 3 through 8, for the critical chan-



Fig. 6: Bit Error Rate for 16 pilots, BdTm = 10�4 and
L = 4.

Fig. 7: Bit Error Rate for 4 pilots, BdTm = 10�6 and
L = 2.

nels or the reduced number, NP = 4, of pilot symbols we
have considered above, the considered benchmarks present
a signi�cant degradation with respect to our algorithm.
This degradation is notable especially for high values of
the BER and the number of diversity branches L and low
values of the number of pilot symbols NP . Moreover, as
illustrated in Figures 4, 6 and 8, our algorithm provides a
good robustness against channel estimation imperfections
for a large number of diversity branches and a low number
of pilot symbols.
By way of example, for a severe channel with BdTm =
10�3 and a raw BER of 10�3, Figure 4 shows that the
gain provided by our algorithm is around 3.5 dB with re-
spect to the most favorable of the considered MMSE-based
benchmarks. Moreover, for the same raw BER, this �gure
shows that our algorithm presents a degradation of only
1 dB with respect to the perfect CSI receiver.
As illustrated in Figure 6, even for less severe channels
with BdTm = 10�4, where both considered benchmarks
show a good performance, our algorithm still guarantees
a gain of 1 dB at a raw BER of 10�3 with respect to the
most favorable of the MMSE-based algorithmand presents
a degradation of less than 0:2 dB with respect to the per-
fect CSI receiver.
As shown in all �gures, the BER curves corresponding
to our algorithm present some kind of �attening at high

Fig. 8: Bit Error Rate for 4 pilots, BdTm = 10�6 and
L = 4.

values of E=N0 for reduced numbers of diversity bran-
ches, L, and pilot symbols, NP , and large values of BdTm.
This �attening is due to the sensitivity of our gradient-
like iterative algorithm to the way its initial conditions
are computed. This problem can be solved by using one
of the two presented benchmarks for the initialization of
the proposed algorithm.

8 Conclusion

We have proposed an iterative receiver with spatial diver-
sity using a semi-blindmaximuma posteriori estimation of
the multipath fading channel. Based on simulation results,
we have noticed that the degradation in performance pre-
sented by this algorithm with respect to perfect channel
state information is very small compared to more intuitive
algorithms.
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