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R�esum�e { Nous �etudions le probl�eme de restauration des images multicanaux utilisant un banc de �ltres RIF. Nous avons
propos�e ant�erieurement une m�ethode de restauration des images multicanaux bas�ee sur la m�ethode d'�egaliseurs mutuellement
r�ef�erenc�es (EMR). Cette m�ethode a d'abord �et�e appliqu�ee au probl�eme d'�egalisation d'un canal de transmission num�erique, ensuite
a �et�e g�en�eralis�ee au probl�eme de restauration des images multicanaux. Nous pr�esentons dans cet article une nouvelle version de la
m�ethode de EMR 2-D avec plus de robustesse vis-�a-vis du bruit additif. Par rapport �a d'autres m�ethodes multicanaux, le calcul
de la m�ethode EMR 2-D est moins coûteux, �etant donn�e que la taille de la matrice principale utilis�ee dans l'algorithme ne d�epend
que de celle des canaux et des �ltres �egaliseurs et non pas de celle de l'image. Finalement, nous illustrons les performances de
l'agorithme EMR 2-D et les comparons �a celles de la m�ethode des moindres carr�ees.

Abstract { We address the problem of blind multichannel image restoration using multiple FIR �lters. Previously, we have
extended the 1-D mutually referenced equalizers (MRE) method for blind equalization of multichannel FIR system to the
multichannel image restoration problem. In this paper, we present further results of a new version of 2-D MRE method that is more
robust against additive noise. Compared to other restoration methods using multiple FIR �lters our method is computationally
more e�cient, since the size of the matrix in the algorithm depends only on the size of blur and restoration �lters and not on the
image size. Finally, simulation results are presented in order to demonstrate the restoration results using the 2-D MRE method,
which we compare with the least-squares (LS) method.

1 Introduction

Multichannel image restoration using FIR restoration �l-
ters, especially in blind setting, has gained increasing in-
terest recently. That is mainly due to its simplicity in
relaxing assumption on input image model, i.e. determin-
istic or random, and in relying only on the diversity of
the channels [3, 4, 5, 6, 7]. Moreover, multichannel image
restoration problem is in general more stable than single
channel restoration problem and can be performed with-
out regularization for moderate SNR. In addition, by using
small size FIR restoration �lters we can gain in computa-
tional cost. Examples of possible applications where more
than one di�erently blurred versions of a single image are
available, include remote sensing, electron microscopy, or
multi-band imaging.
Blind multichannel image restoration in general can be

done in two ways. The two-step approach estimates �rst
the blurs, then uses any conventional method to restore
the original image based on the previous channel estimate
[5, 3]. The one-step approach estimates directly the origi-
nal image or the restoration �lter/equalizer [3, 6, 7]. Pre-
viously, we have extended the 1-D mutually MRE method
for blind equalization of multichannel FIR system to the
multichannel image restoration problem [7]. In this pa-
per, we present further results of a new version of 2-D

MRE method, borrowing the idea presented in [1] for 1-D
signals.

2 Problem Formulation

Denote x(n1; n2) the original image, y(n1; n2) = [y1(n1; n2);
: : : ; yK(n1; n2)]

T the outputs fromK linearly spatially in-
variant FIR unknown blur functions h(n1; n2) = [h1(n1; n2);
: : : ; hK(n1; n2)]

T , and b(n1; n2) = [b1(n1; n2); : : : ; bK(n1;
n2)] the observation AWGN noise. We model them as

y(n1; n2) =
X
k1;k2

h(k1; k2)x(n1 � k1; n2 � k2)

+b(n1; n2) (1)

For the subsequent presentations we use the following ma-
trix form expression

Y(n1; n2) = HX(n1; n2) +B(n1; n2) (2)

where the system matrix H is of size Kmgng � (mh +
mg � 1)(nh + ng � 1), whose expression is given in [7],
Y(n1; n2) = [yT (n1; n2); : : : ;yT (n1�mg+1; n2�ng+1)]T

andB(n1; n2) = [bT (n1; n2); : : : ;bT (n1�mg+1); n2�ng+
1))]T are Kmgng � 1 vectors, and X(n1; n2) = [x(n1; n2);
: : : ; x(n1� (mh +mg �2); n2� (nh+ng�2))]T is a (mh+
mg �1)(nh+ng �1)�1 vector. (mh�nh) and (mg �ng)



are the size of the multichannel blur �lters and restoration
�lters, respectively. We assume that the system matrixH
is of full-column rank.

3 MRE Method

Instead of �rst identifying the channels and then �nding
the equalizers or the system inverse, the MRE method es-
timates directly the equalizers or the restoration �lters.
The basic idea of the method, originally developed in [2]
for 1-D signals and extended to 2-D in [7], is that the
outputs of di�erent equalizers with di�erent delays act as
reference signals to each other.

We consider �rst the noiseless condition. De�ne two
equalizers g(i;j) and g(k;l) of size (Kmgng � 1) satisfying

gT(i;j)Y(n1; n2) = x(n1 � i; n2 � j)

gT(k;l)Y(n1; n2) = x(n1 � k; n2 � l) (3)

where (i; j); (k; l) 2 (0; : : : ;mh + mg � 2) � (0; : : : ; nh +
ng � 2) are the restoration delays. Consequently we can
write

gT(i;j)Y(n1; n2) = gT(k;l)Y(n1 + k � i; n2 + j � l)

= x(n1 � i; n2 � j) (4)

where (i; j) 2 (0; : : : ;mh+mg�3)�(0; : : : ; nh+ng�3) and
(k; l) 2 (i+1; : : : ;mh+mg � 2)� (j+1; : : : ; nh+ng � 2).
Using all equalizers corresponding to di�erent delays as
column vectors, we write an equalizer matrixG such that

GTH = �I; � 2 R (5)

In 1-D, the equalizers are estimated by minimizing the
quadratic criterion [2]

minJ1(G) =
X
n

Ek[I 0]GTY(n)� [0 I]GTY(n + 1)k2

(6)

where G is a matrix of equalizers (i.e., the i-th column
vector of G is an equalizer with a delay (i � 1)) under a
given constraint, i.e. trace(GTG) = 1. This constraint
is required to avoid the trivial solution G = 0, as well as
the non-zero blocking matrices giving GTH = 0, which
correspond to � = 0.
Direct extension of the standard 1-D MRE method to

2-D leads to high computational cost since the number
of restoration delays increases quadratically along with
increasing �lter size. However choosing any number of
equalizers with di�erent delays will in general give a solu-
tion that are mixtures of a given number of restored pixels
of di�erent delays, such that a separation step is still re-
quired. To alleviate this problem a modi�ed version of
2-D MRE is proposed where we estimate only 4 equaliz-
ers corresponding to 4 di�erent delays (0; 0); (0; nh+ng�
2); (mh + mg � 2; 0); and (mh + mg � 2; nh + ng � 2),
which are su�cient to restore the whole part of the orig-
inal image [7]. In this way the number of common pixels
of the original image contributing to a pair of observed

images region is only one. Unfortunately, the restored
image using the equalizers with delays of the edge part
of the reconstruction area is in general more noise sensi-
tive than using other delays of the recontruction area, i.e.
the center part. Moreover, the estimated equalizers using
linear or quadratic constraint generally contain also the
components of the null space ofHT which may render the
unknown restoration constant factor � close or even equal
to zero.

3.1 Modi�ed MRE method

We propose here a robust 2-D MRE method, based on
the work in [1] for the 1-D MRE method, in which the
equalizers are estimated such that the output energy of
the restored image is maximized. To choose the equal-
izer matrix corresponding to large � we use the following
criterion

max
~G

E(k ~GTHk2) (7)

where ~G is the equalizer matrix which consists of only 4
equalizer vectors gi; i = 1; : : : ; 4 corresponding to 4 di�er-
ent delays discussed before. Speci�cally, the modi�ed cost
function of (6) for 2-D MRE method is given by

minJ2(g1;g2;g3;g4) =
X
n1;n2

jgT1Y2 � g
T
2Y1j

2

+
X
n1;n2

jgT3Y4 � g
T
4Y3j

2(8)

where the equalizers gi; i = 1; : : : ; 4 correspond to the
restoration delays (0; 0); (mh+mg�2; nh+ng�2); (0; nh+
ng � 2); and (mh + mg � 2; 0), respectively, and Y1 =
Y(n1�(mh+mg�2); n2�(nh+ng�2));Y2 = Y(n1; n2);Y3 =
Y(n1 � (mh +mg � 2); n2); and Y4 = Y(n11; n2� (nh +
ng � 2)). We then rewrite (8) in two separate forms

argmin
g1;2

gT1;2Q1g1;2 (9)

argmin
g3;4

gT3;4Q2g3;4 (10)

where g1;2 = [gT1 ;g
T
2 ]

T , g3;4 = [gT3 ;g
T
3 ]

T , and Qi; i = 1; 2
are two positive quadratic forms. We present the compu-
tation for i = 1 only, since it is similar for i = 2. De�ne
V1 an orthogonal basis of the kernel of Q1. In noisy con-
dition, V1 is given by the d = 1 + 2(Kmgng � ((mh +
mg � 1)(nh + ng � 1)) least eigenvectors of Q1. Using
the constraint kg1;2k = 1, the solution of (9) is given by
g1;2 = V1u where u is a d� 1 unit vector. Consequently,
the solution of (7) is g1;2 = V1u1 where u1 is the principal
eigenvector of

VT
1 (I
R)V1 (11)

where 
 denotes the Kronecker product, I is the 2 � 2
identity, and R = E(Y(n1; n2)Y

T (n1; n2)).

Remarks



1. We have chosen J2 in such a way that we can decou-
ple the estimation of g1;2 from that of g3;4. However,
we can improve slightly the estimation accuracy as
well as the complexity by referring the �rst equaliz-
ers with the two last ones. In fact, instead of J2, we
can use

J3(g1; : : : ;g4) =
X

1�i<j�4

kgTi Yi � gTj Yjk
2

= [gT1 g
T
2 ]

~Q

�
g1
g2

�

where ~Q is the modi�ed quadratic form.

2. Although using only the 4 restoration delays dis-
cussed before is su�cient to restore the original im-
age, it does not exploit fully the channel structure.
Speci�cally, the 4 estimated equalizers gi; i = 1; : : : ; 4
rely on particular realization of h(0; 0);h(0; nh+ng�
2);h(mh+mg �2; 0); and h(mh+mg �2; nh+ng�
2). Moreover, it is known from simulation that the
noise-sensivity of FIR restoration �lters would be
di�erent for di�erent parts of the image [4]. For ex-
ample, the parts of image reconstructed using the
4 'corner' restoration delays would be worse than
the other parts. We can improve the noise sensiv-
ity by adding more equalizers corresponding to dif-
ferent delays other than the 4 previous delays. In
particular, we can fully exploit the channel struc-
ture by using the equalizer with delay (d(mh+mg+
2)=2e; d(nh+ng+2)=2e). Let g5 and Y5 denote this
equalizer and the corresponding observation vector.
Then, we can estimate the 5 equalizers using

minJ4(g1; : : : ;g5) =
X

1�i<j�5

kgTi Yi � gTj Yjk
2

3. In this paper, we have implicitly assumed that the
blur size (mh; nh) is exactly known. In fact, if the
latter is unknown or incorrectly estimated the MRE
method as presented above would fail to provide the
desired result. A simple solution would be to test a
set of �lter size and chose the one corresponding to
the best result. Another solution would be to chose
a set of sizes f(mh;i; nh;i)gi=1;:::;I in such a way it

contains the exact channel size. Let J2( ~Gi), where
~Gi = [gi1; : : : ;g

i
4], be de�ned as in (8) using the

size (mh;i; nh;i). We can then estimate the equalizer
from

minJ5( ~G) =
IX

i=1

J2( ~Gi)

4 Simulation

In this section, we present simulation results of our pro-
posed method tested on a photographics image of size
(100�100). We measure the performance of the proposed
2-D MRE method against the LS method. Speci�cally
for performance comparison using objective test, we use

the improvement in SNR (ISNR) and normalized mean
squared error (NMSE), given by:

ISNR = 10:log10
1=K

PK

k=1

P
n1;n2

[x(n1; n2)� yk(n1; n2)]2P
n1;n2

[x(n1; n2) � x̂(n1; n2)]2

NMSE =
kX� X̂k2

kXk2

where x̂(n1; n2) is the restored image and the average over
k is to take multichannel setup into account.
The original chapel image is passed through 4 FIR chan-

nels of (mh � nh) = (3� 3), whose values are chosen ran-
domly using uniform distribution within the range 0 and
1. Energy preservation is assumed, since the imperfec-
tions in an image formation system normally act as pas-
sive operations on the data. White Gaussian noise with
equal variance was then added for each channel. Using
exact convolutional model, the observed images are con-
sequently of size (98� 98). The size of restoration �lters
is taken to be (mg � ng) = (3� 3). To cope with the un-
known multiplication constant in the solution of the MRE
method, we assume that the range of the image value in
each pixel is known. As mentioned before, here we com-
pute 4 multichannel equalizers corresponding to 4 di�erent
delays.
Simulated SNR of 30 dB is used and the results of

restoration using MRE method and LS �lters shown in
Fig. 1. The restored image using MRE method in Fig.
1d is selected for the best visual result among 4 restored
images associated with di�erent restoration delays. We
notice that visually the quality of MRE restored images
are slightly inferior from LS restored images, which is
supported by quantitative comparisons using ISNR and
NMSE illustrated in Fig. 2 and Fig. 3, respectively. The
ISNR curves are averaged values of many runs for each
SNR. The di�erence of around 5 dB is observed between
the two ISNR curves. The delay (i; j) used for LS restored
images is ((mh + mg)=2; (nh + ng)=2), which in general
gives smaller restoration error than the delays on the edge
of the reconstruction region, like the ones we use for the
MRE method. This is to be expected, since using LS
restoration �lters, the multichannel blurs are completely
known, whereas MRE algorithm operates in blind condi-
tion.
From the experiments, we found that underestimation

of the channel �lters support still provides better restored
image than the blurred ones, whereas overestimation leads
certainly to erroneous restoration. This can be easily ex-
plained by the fact that for the second case the channel
matrix looses its fullrankness. In the real condition with
blind setting, a strategy of augmenting gradually the esti-
mated �lter support, until most visually satisfying result
is obtained, could then be employed.

5 Conclusion

We have presented a new version of the 2-D MRE method
with more robust performance against additive noise. The



proposed method overcomes a drawback of the standard
2-D MRE method by maximising the power of the re-
stored image. Compared to other restoration methods
using multiple FIR �lters our method is computationally
more e�cient, since the size of the matrix in the algorithm
depends only on the size of blur and restoration �lters and
not on the image size. Simulations result show that the
performances of the robust MRE method are closed to the
performances of the LS solution.

(a) (b)

(c) (d)

Figure 1: Simulation (a) original chapel image, (b) 1 of 4
blurred and noisy images, with SNR of 30dB (c) restored
image using LS solution (d) restored image using the MRE
method.
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of the blurred images using the LS method (solid line)
and using the MRE method (dashed line), for the chapel
image.
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Figure 3: Normalized MSE as a function of the SNR of the
blurred images using the LS method (solid line) and using
the MRE method (dashed line), for the chapel image.
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