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RÉSUMÉ

Le papier propose une approche basée sur les réseaux de
neurones pour modéliser les canaux non linéaires avec
mémoire. Ce papier présente uniquement les algorithmes et
leur comportement pendant l‘apprentissage. Plusieurs
applications peuvent être trouvées dans [5].

ABSTRACT

The paper proposes a neural network approach for modelling
nonlinear channels with memory. The paper only presents the
algorithms and their learning bahavior. Several applications can be
found in [5].

1  Introduction

Several nonlinear adaptive techniques have been
proposed for modelling nonlinear channels with memory.
These techniques include Volterra series, wavelet networks,
neural networks, etc. See [11, 6] for a review. For example,
adaptive Volterra series have been applied in [1] for
modelling digital satellite channels. These Volterra models do
not characterize each element of the channel. They provide a
model only for the overall channel input-output transfer
function. However, Volterra models provide an estimation of
the global system memory and the complexity of the
nonlinear transfer function.

Non adaptive parametric techniques also have been
proposed for modelling nonlinear systems with memory (e.g.
[3, 4, 7, 8, 9]). Nikias and Petropulu [7] review higher order
statistic-based methods used for detection and
characterization of nonlinearities. In particular, they present
examples for the characterization of Volterra series
coefficients. Block-oriented methods have been largely used
for nonlinear system identification. These methods are based
on the idea that the system to be identified is composed of
several simple subsystems. For example, several authors
studied Hammerstein systems which consist of the cascade of
systems composed of a nonlinear memoryless element
followed by a linear dynamic one. See for instance [4, 8, 9].

The key issue in adaptive system identification is to find
the best model structure within which an optimal model has to
be found by using an appropriate adaptive algorithm. This
paper proposes adaptive neural network approaches for
modelling nonlinear channels with memory. It is shown that a
good choice of the neural network structure should follow
directly from the application and the prior knowledge on the
physical system to be modelled.

This paper presents only the algorithms and their learning
behavior. In [5] two typical problems are addressed:

i) identification and characterization of digital channels
which are composed of physically separable parts (e.g. linear
filters with memory and nonlinear memoryless devices). An
example is a digital satellite channel, composed of a linear
filter followed by a memoryless nonlinear travelling wave
tube amplifier (TWT) and a second linear filter. The neural
network approach models the global nonlinear channel input-
output transfer function and characterizes each component of
the channel separately. The learning process uses only the
channel input-output signals.
    ii) modelling nonlinear channels which cannot be simply
represented by separable parts. An example is the solid state
power amplifier (SSPA) (nonlinear amplifiers with memory)
used typically in satellite communications.
The analytic analysis of neural network algorithms applied for
modelling nonlinear channels can be found in [2] and [5].
The paper is organized as follows. Section 2 gives an example
of a nonlinear channel. Sections 3 and 4 present the neural
network algorithms. Finally, section 5 is devoted to the
algorithm learning behavior.

2 Example of a nonlinear channel

The satellite channel is a typical nonlinear channel. It
consists of two earth stations connected by a satellite repeater
through two radio links (uplink and downlink). As an
example, figure 1 represents a complex base-band model. The
transmission filter F0, the IMUX (input multiplexing) filter
F1, and the OMUX (output multi-plexing) filter F2 are linear.
The TWT is a memoryless nonlinearity with a complex
transfer function which depends only on the input complex
envelope. The TWT exhibits two kinds of nonlinearities,
amplitude distortion (AM/AM conversion) and phase
distortion (AM/PM conversion) [1, 10]. The TWT AM/AM
and AM/PM conversions are represented by Saleh model
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3 Identification structure

This part proposes to identify the on-board devices (F1-
TWT-F2). The neural network identification scheme is
presented in figure 2. Figure 3 shows the neural network
structure which duplicates the satellite channel structure (i.e. a
memoryless nonlinear system between two linear systems).
The neural net is composed of a linear filter (W1), a nonlinear
network (NLN), and a second linear filter (W2). The
nonlinear network structure also duplicates the TWT
amplifier structure. It is composed of two sub-networks which
correspond to the gain and phase conversions, respectively.
Note that these gain and phase conversions only depend on
the input signal amplitude (as in the TWT).

This structure characterizes separately each channel
component i.e. the filters F1 and F2 and the TWT amplitude
and phase conversions. Note that a classical multi-layer
neural network cannot separately characterize each channel
component but only can model the overall channel input-
output behavior.

The neural net operates as follows. W1 filters the
complex-valued input ( )x n  (real FIR filtering). The output of

W1 is ( ) ( )y n w x n kk
k
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where N1
 is the length of W1.

The nonlinear network (NLN) has two nonlinear parts: 1)
NLNG is the gain conversion; 2) NLNP is the phase
conversion.

The squared amplitude ( )ρ n  of the first filter output ( )y n

is presented to both NLNG and NLNP. Their respective
outputs ( )G n  and ( )φ n  are expressed as:

( )( ) ( )( )G n w f w n b bG k G k G k G
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where ( ) ( ) ( )ρ n r n y n= =2 2 , f is a nonlinear activation

function, and NG
 and N

P
 are the number of neurons in NLNG

and NLNP, respectively.
Note that ( )φ 0 0= , i.e. the phase origin is 0 by

construction.
The output of the NLN is given by:

( ) ( )( ) ( )( ) ( )z n G n e y nj n= ρ φ ρ        (II.4)

The NLN transfer function is similar to that of a TWT
amplifier: nonlinear gain and phase conversions which
depend only upon the input signal amplitude.

Finally, the second filter W2 output is given by:

( ) ( )s n w z n kk
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where N2
 is the length of W2.

4 Algorithm

The network learning is achieved at each iteration using
the channel input-output complex signal pair.

The network weights are adjusted with a gradient descent

algorithm which minimizes the actual squared error between
the channel output ( )d n  and the neural network output. The
squared error at time n is:

( ) ( ) ( ) ( ) ( ) ( ) ( )J n e n e n e n d n w n z n kR I k
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where R and I denote the real and imaginary parts,
respectively.

The stochastic gradient recursion for the second filter is
given by:

( ) ( ) ( ) ( ) ( ) ( )( )w n w n e n z n i e n z n ii i R R I I2 21 2+ = + − + −µ     (II.7)

The stochastic gradient recursions for the first filter and
the nonlinear neural network does not follow immediately
from (II.6). This is because the error at time n depends upon

( ){ }w n k Nk2 20 1, , ,...,=  and ( ){ }z n k k N− = −, , ,...,0 1 12
.

Equations (II.1-4) show that ( )z n k−  depends upon

( ){ }w n k j Nj1 101 1− = −, , ,...,  and the nonlinear network

weights at time n-k. Therefore the gradient calculation at time
n requires the partial derivatives of ( )J n  according to the
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If µ  is sufficiently small, the weights can be assumed to be

slowly varying. Then, the gradient can be approximated by
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Therefore, the gradient in Eq. (II.8) depends upon the

actual partial derivative of ( )J n  according to
( ) ( )w n w ni i1 1 1, ,...−  and ( )w n Ni1 2 1− + . In order to simplify

the algorithm, Eq. (II.8) is troncated and only the ( )J n  most
recent terms are used:
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Thus, if λ = 0, only the actual term is used. If λ = −N2 1,
then all the terms in equation (II.8) are used.

The following presents the updating rule for a given λ .
The algorithm (parametrized by λ ) will be denoted by ( )A λ .

NLNG update
Second layer weights:
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First layer weights:
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NLNP update
Second layer weights:
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Update of W1:
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Remarks:

1)  The above algorithms have some common properties with
the classical backpropagation algorithm such as error
backpropagation, parallelism, etc.

2)  The two nonlinear sub-networks NLNG and NLNP can be
adjusted in parallel and simultaneously (i.e. the updating
terms of each sub-network do not depend on the other).

3)  The computational complexity (CC) increases as λ
increases (e.g. the CC of ( )A λ = 1  equals at least two times
that of ( )A λ = 0 ).

4)  Note that the above algorithms can be slightly modified in
order to model systems which are composed simply of
two blocks rather than three, for example a linear filter
followed by a TWT can be modelled by a W1-NLN
structure. Note that simulation results have shown that if
you use a W1-NLN-W2 structure to model a two block
structure composed of F1-TWT (resp. TWT-F2), then W2
(resp. W1) converges to a constant.

5 Algorithm behavior

The number NLNG and NLNP neurons areN NG P= = 9
in the simulations below. The activation function is the
hyperbolic tangent function. Various λ  have been used so as
to observe its effect on algorithm behavior and performance.

The input signal is a uniformly distributed white noise. Its
power was chosen such that the TWT operates at saturation.

In order to accelerate the convergence, the algorithm starts

with small N1
 and N2

 (e.g. N N1 2 5= = ). Then, 5 weights are
added to W1 and W2 after each 25000 iterations (i.e.

( ) ( )N n N n1 225000 25000 5 5 10= = = = + = , etc.). The new

weights are initialized at 0. When N N1 2 60= =  (i.e. at the
275000th iteration), the number of weights is fixed until the
end of the learning process.

Figures 4-6 show the algorithm mean-square-error (MSE)
learning for different learning rates µ . The MSE is calculated

over blocks of 2500 iterations, i.e.

[ ]( ) ( )MSE n n k k e i
i k
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, ,∈ + =
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+
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1

2500
2

1

2500
.

Comments on the convergence behavior:
1)  At the beginning of the learning phase, the algorithms

display a rapid convergence (the MSE has a stair-case
shape). This is due to the increase of N1

 and N2
 at each of

the 25000 iterations.
2)  The MSE asymptotically approaches a small value.

However, near convergence, the MSE oscillates. The two
model filters begin alternative oscillations about their
optimum values. These oscillations are more apparent
when the learning rate µ  is high.

3)  Figures 4-6 show faster convergence as λ  increases.
Therefore, a tradeoff exists between convergence speed,
MSE performance and computational complexity.

4)  The algorithms were able to model each part of the
channel (see e.g. [5]). However, although the memoryless
portion of the satellite channel has been accurately
modelled by the nonlinear network, the linear filters were
mis-matched in delay, i.e. the impulse response of the first
model filter W1 was delayed by ∆  units of time relative
to the impulse response of the first channel filter, whereas
the second model filter W2 was advanced by ∆  units of
time relative to the impulse response of the second
channel filter. Thus, the overall system delay was correct.
Note that the delays can be removed if an instruction is
added to the algorithm near convergence. This instruction
consists of adding one unit advance (resp. one unit delay)
to W1 (resp. to W2). If the learning MSE increases, then
values of W1 and W2 (before adding the advance/delay)
are kept. Otherwise, if the MSE decreases, this procedure
is repeated (i.e. by adding a new unit advance/delay).

6 Conclusion

The paper presented neural network algorithms for modelling
nonlinear channels with memory. A typical example of a
nonlinear satellite channel was given. Simulation examples
were given in order to illustrate the algorithms learning
behavior.
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