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RÉSUMÉ

Nous reconstruisons les spectres temporels obtenus à partir de
courbes de lumière incomplètes de naines blanches. Le principe
de régularisation sous-jacent fait appel à l’interpolation à bande
passante limitée et à un processus de poursuite adaptée. Nous
illustrons cette étude par un exemple simple, que nous comparons à
des données observationnelles WET (Whole Earth Telescope).

ABSTRACT

We reconstruct temporal spectra obtained from incomplete light
curves records of white dwarfs. The regularization of the underlying
inverse problem makes reference to band-limited interpolation and
matching pursuit. We illustrate this study with an easy application
example and we discuss its degree of confidence by comparing it
with WET (Whole Earth Telescope) observations.

1 Astrophysical context

The study of pulsating white dwarfs proves to be an important
source of fundamental astrophysical parameters, and may in
particular lead to constraints on the theory of stellar evolution
[1].

The rich spectrum of their non-radial pulsations may be
used to understand how the eigenmodes are driven and damped
and then to deduce their global properties (mass, rotation
period, magnetic field) and to derive local information on the
stucture of their outer layers. However, the time scales of these
variations are not still well known.

2 Nature of data

In their initial form, the data at our disposal are 10 s integration
time light curves (see an example Fig. 1). To take into account
the maximum reliable frequency information contained in the
observation of a given white dwarf, it is necessary to have
as long light curves as possible and in particular to avoid
diurnal breaks. Indeed, the case of a one-night observation
does not display sufficient resolution to extract directly, from
the brightness record of the star information of astrophysical
interest.

One way to circumvent this problem is to put a star on a co-
ordinated multi-site observing campaign between telescopes
distributed over several longitudes and afterwards to reduce
records to individual normalized light curves. In practice, due
to weather conditions or other problems, the coverage of the
time series that can be obtained remains incomplete (80 %

maximum). Thus, the multi-site transfer function, more than
the one-night one, may generate systematic errors.

3 Methodological principles

In all cases (one night or multi-site), the experimental light
curves are of the type  .t/ D û.t/w.t/ where w.t/ is the
observing window function, so that the dual data (see Fig.1)b .u/ D bû.u/ ? bw.u/
in Fourier space are the result of a convolution operation.
We are facing a deconvolution problem in Fourier space,
and we try to reconstruct the spectrum that would have been
obtained with a non-discontinuous or wider observing window
function.

Due to the noise and to systematic errors, it is preferable,
for a stable reconstruction, to give up restoring the spectrumbû.u/ at its highest level of resolution. One is then led to
reconstruct a smoothed version of bû.u/ corresponding to a
better but limited time coverage.

The reconstructed spectrum at some level of resolution, is
defined as the function minimizing in the mean-squares sense
a functional of the type

k g.t/.e .t/Ä û.t// k2

where e .t/ is obtained from experimental data  .t/ by some
preliminary processing.

The regularization function g.t/ to be built depends on the
time coverage, on the signal-to-noise ratio and on the target
resolution in Fourier space [2].
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Figure 1 — Time-frequency energy distribution obtained by using the matching pursuit algorithm on the signal presented at the
bottom. This signal is the normalized centered light curve of the GD 154, observed on May 17, 1993 at Mauna Kea Observatory.
The Fourier transform (in modulus) is recalled on the left. A Gabor dictionary is used, and the algorithm converges after 450
iterations.

4 Regularized inverse problem

The minimum eigenvalue of the “imaging operator” vFg2 FÉ

conditions the stability of this problem. Here v stands for the
characteristic function of the frequency support chosen for de-
convolution; F and FÉ stand for for direct and inverse Fourier
transform. This eigenvalue is a function of an interpolation pa-
rameter characterizing the amount of weighted interpolation
to be performed both in real and Fourier spaces. If this eigen-
value happens to be too small, the problem is ill-conditioned
and must be reformulated either at a lower level of resolution
by changing g, or better by improving the choice of the fre-
quency support v. In this last case, it is judicious to deconvolve
over particular ranges of frequencies, but the choice of these
intervals turns out to be non-trivial [3].

5 Discrimination of frequency sup-
ports

Whereas the choice of a support is easy for low frequencies it
is more difficult for high frequencies, because in a noisy part
of the spectrum, intervals including low amplitude peaks are
hard to select by eye. Moreover, we search oscillations arising
almost everywhere in the signal, which are characteristic of

the structural properties of the star. So, it is necessary to get
information about the time life corresponding to a given peak
in the Fourier spectrum. The particular nature of this problem
led us to time-frequency analysis, used as a complement to
Fourier analysis, as a way of choosing these supports, and the
matching pursuit algorithm plays here a decisive role [4].

This speeds up the convergence rate of the deconvolution
algorithm and, at the cost of a small edge effect, improves
the quality of the solution because the minimum eigenvalue
of the imaging operator increases as the support v decreases.
As a result, this technique also indicates how to recognize a
reconstruction artefact introduced by another deconvolution
method, or verifies a posteriori whether its results are satis-
factory.

6 The matching pursuit algorithm

This algorithm allows us to choose, in a given redundant finite
dictionary of time-frequency waveforms, a set of atoms that
match the signal as well as possible.

The light curve  .t/ is approximated with a single vector
e0 of the dictionary:

 D<  ; e0 > e0 C R 

such that j <  ; e0 > j is as large as possible.
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Figure 2 — Full line: raw Fourier data from a multi-site observing campaign. The noisy background is indicated by an horizontal
dotted line. Dotted line: raw Fourier data from a one-night observation. Dashed line: result of our deconvolution on the support
indicated on Fig. 1.

The main idea of a Matching Pursuit is to sub-decompose
the residue R , by finding a vector e1 that matches it as well as
possible, as it was done for . And each time, the procedure is
repeated on the following residue. It is then possible to build
a hierarchy of coherent structures (e0; e1; e2; : : : ) yielding a
time-frequency energy distribution of the signal.

A frequency support can therefore be defined for each
coherent structure extracted presenting sufficiently long time
life. The localization of each peak in the Fourier transform
can be precisely read on the Y-axis of the matching pursuit
diagram. This allows us to detect coherent structures lost
in the noise and then to choose a support over which the
deconvolution procedure can be set in motion (see the diagram
Fig. 1).

7 Deconvolution

Once the deconvolution is performed over one support de-
tected with the Matching Pursuit algorithm, we can set in mo-
tion the deconvolution over the following one, and so on. And
under the condition that the spectrum of the star can be broken
up, we reconstruct it step by step, whereas a global reconstruc-
tion was impossible at the same resolution.

As an example of application, we present the deconvolution
of a part of the white dwarf DAV GD 154 spectrum, on
the support outlined Fig. 1. For a gain in resolution of 2.1,
the minimum eigenvalue of the imaging operator is 0.152,
and the upper-bound of the relative reconstruction error is 15
per cent. In 13 iterations, the method of conjugate gradients
provides the least-squares solution presented in Fig. 2. It is not
surprising to observe additional information, and in particular
the splitting of the two main peaks. The raw data of a multi-site
observing campaign are also represented on this figure. One
can note that in such multi-site data there is a strong noisy
background essentially due to the side lobes of the impulse
response.

We can verify that the information contained in peaks (1) to
(6) of our deconvolution is also contained at higher resolution.
For example, peak (3) includes in fact three peaks and this
is why its maximum appears centered over these three peaks.
The same effect is present for peak (2). Note that peak (A) is an

artifact, resulting from a systematic error due to the segmented
nature of the multi-site observing window.
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