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RESUME

On considere le probléme de calculer le maximum du rapport
d’énergie transférée par des signaux de durée limitée transmis sur des
canaux linéaires. Le cas des canaux lineaires avec fonction de trans-
fert rationelle est introduit et une procedure de solution analytique du
probleme de optimization est décrit. Le rapport d’énergie transférée
dans un intervalle de temps limité est calculé dans des cas d’intérét.
Deux mesures de performance — rapport d’énergie transférée et rap-
port d’énergie IES — sont calculé pour les signaux optimaux et com-
paré avec les signaux rectangulaires et sinusoidelles utilisée couram-
ment pour évaluer les gains que I’on peut atteindre. Le probleme de
maximization est resolu pour un interval de sortie J = [ = [0, T'] et
sa version retardée J = [t,, )+ T] =1, + 1.

1 Introduction

According to standard Fourier analysis, time-limited signals
passing through band-limited channels are spread in time.
The energy dispersion introduced is a source of performance
degradations which are partially recovered in many appli-
cations by equalization techniques. These counter-measures
would certainly be more efficient if used jointly with signals
which have a minimal energy stretched along the signaling in-
terval by filtering, or which have their maximum energy trans-
ferred over the signaling interval. This optimization problem
attracted the attention of many researchers early in the fifties
because of its implications for digital communications, sys-
tem theory and related fields. Much of this work was devoted
to the ideal low-pass filter on account of its natural connec-
tion with the representation of band-limited signals [11, 6, 7].
In these applications, the energy spread outside the interval
I = [0, T'] produces disturbances known as intersymbol inter-
ference (ISI). Hence, the maximum signal energy transferred
at the filter output is an important issue in the design of good
signal sets for digital transmissions. This energy transfer is
measured as the output-to-input signal energy ratio over po-
tentially different time intervals (in this paper we denote by
and J the input and output time interval, respectively). Most
works in this area refer to an unlimited output time interval
J = (—o00, 00) and, according to this assumption, Slepian
[11] solved the problem for the ideal low-pass channel. Specif-
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ABSTRACT

Maximization of the energy transfer ratio for time-limited signals
over linear channels is considered. The case of linear channels with
rational transfer function is addressed and a general procedure for
the analytic solution of the optimization problem is outlined. The
maximum energy transfer ratio over a fixed time interval is evaluated
in some cases of interest. Two performance metrics — the energy
transfer ratio and the energy ISI ratio — are evaluated for the optimal
signals and compared to those of commonly used rectangular and
sinusoidal pulses in order to determine the achievable gain. The
maximization problem is solved for an output interval J = [ =
[0, T'] and for its delayed version J = [t,, 1, + T]1 =1, + I.

ically, he showed that the optimal pulses are related to pro-
late spheroidal wave functions, and that these signals are also
optimal over the limited output time interval J = I. This
property is not true for all channels, as we will show in this
paper. Subclasses of rational transfer function channels have
been considered as well as the ideal low-pass channel. For in-
stance, in [5] the optimal waveforms are found for the single-
pole low-pass filter and in [2, 3] the optimal waveforms are
found for Butterworth filters referring to the output time in-
terval (—oo, 00). In these papers special analytic techniques
were developed which can be derived from Youla’s general
approach [12].

Undoubtedly, the case of limited output time interval J is
the most interesting because gives the minimum achievable ISI
for a fixed channel bandwidth W and symbol time duration 7'.
It has, however, received little attention probably due to the
fact that analytical solutions seemed unlikely. In this paper,
the maximization problem is addressed for an output interval
J =1 =10, T] and for its delayed version J = [, , +T] =
t, + I. The introduction of a delay #, may lead to significant
reduction of the ISI without increasing the complexity of the
system. Delays often occur in digital communications and are
managed routinely. The computation of the minimum time
offset ¢, yielding the maximum transfer of energy will be
carried out as part of the optimization process.
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2 General results

In this work we consider square-integrable functions y(t) €
L2(R) over the real axis R = (—o0, 00). The energy €,[y]
of y(¢) included in the interval J is given by the integral
€,[y] = [,y(®? dt. Whenever y(¢) is the output of a
linear channel with impulse response A (¢, t) and input signal
x(t) € L*(I), we have y(r) = [, h(t,T)x(r) dr,t € R.
The energy of y(¢) included in J/ C R can be expressed as a
quadratic integral form in x(z)

<<<;,[y]=/y(z)2 dt://%,(r, Dx(Ox()dtdr (1)
J 1JI

where the energy kernel is defined as the integral

X, 1) = / h(@,t)h@®, t) do 2)
J

The filtered signals are spread in time, and the resulting energy
dispersion is usually an unwanted side-effect.

Definition 2.1 — The energy transfer ratio and the energy
ISI ratio from I to J for a channel with impulse response
h(t, v), input x(t), t € I, and output y(t), t € J, are defined
respectively as
€,[y] Erlyl —€,1y]
€, lx] €0yl
When J = I the energy transfer ratio is defined in such a
way that the greater the ratio, the greater the energy passed
through the filter. Hence, for channels with additive noise,
optimization of this figure increases the signal-to-noise ratio.
The energy ISI ratio, on the other hand, is a measure of the
amount of ISI because it directly compares the energy included
in the signaling time interval with the energy spread outside it.

AMx,J, h] = and nlx,J,h] =

Problem 1 — Given a linear channel with impulse response
h(t, 1), find a signal x(t) € L>(I) with fixed energy €,lx] =
€ which gives the maximum )\.opl of Mx, J, h].

Necessary, and in many cases sufficient, conditions charac-
terizing any solution x (¢) are already known [5, 8].

Proposition 2.2 — Every solution of Problem 1 is a signal
x () satisfying the following Fredholm integral equation of the
second kind

/%J(I,u)x(u)du = Ax ()
I

with a positive definite kernel, as defined in equation (2). The
maximum eigenvalue A gives the maximum energy transfer
ratio.

tel @3

When J = ¢, + I, the optimization procedure involves two
steps. First, 7, is fixed and the optimum given by Proposition
2.2 is computed, then the best 7, is found using the following
proposition.

Proposition 2.3 — The solution of Problem 1 when J =
t, + 1 is given by a normalized eigenfunction x(t) of ¥ , (¢, u)
defined in (2):

/57510, )x(t)dt = Ax (1)
I

and t, is the minimum nonnegative value obtained from the
condition

tel @)

y(ty)* = y(ty+T)* S

It can easily be seen that for time-invariant linear channels
with time-symmetric (even) impulse response the maximum
energy transfer over a finite output interval J = t, + I occurs
for 7, = 0. Although these transfer functions are not physically
realizable, they include important filters such as the ideal low-
pass filter. Therefore Slepian’s optimal solution for J = [ is
also optimal for J = ¢, + I with £, = 0.

3 Rational transfer functions

We now consider channels with a rational transfer function and
solve Problem 1 for a finite output time interval J = [0, T, ].
Let the filter rational transfer function be given as a Laplace
transform:

1+h1s+h2s2+...+hms’” _ M(s)
1+g1s+g2s2+...+gns” — P(s)

with n > m, and let us assume that H (s) has simple poles
a,,...,a,. The impulse response is consequently

H(s) = £{h(r)}=

h(t) =u(t) Y A
i=1

where u(¢) denotes the unit step function.
Our aim is to find the sequences of eigenfunctions x, (¢) and
eigenvalues A, which satisfy the Fredholm integral equation of
Problem 1. The case of an infinite output time interval has been
settled by several authors [10, 12, 2, 5] who developed various
techniques based on the common principle that commuting op-
erators admit the same set of eigenfunctions [1]. In particular,
if H(s) has simple poles, Youla’s solution [12] exploits the
rational property of the transfer function and halves the labor
of solving a transcendental equation which cannot be further
simplified. Although Youla’s simplification does not apply to
finite J, most of the arguments still work if combined with
Franks’ approach [3]. The method we propose can be summa-
rized in a three step program.

Step 1: Find a differential operator commuting with the
Fredholm integral operator.

Step 2: Let K(s) = H(s)H (—s) = N(s?)/D(s%). Obtain
a candidate eigenfunction solving a differential equation

d? 1 d?
(D(F) - XN(F)> x()=0

Let £o,, ..., £o, be the 2n simple roots of the characteristic

equation
1
D(s?) — xN(sz) =0

then the eigenfunctions for J{, (¢, 7) are of the form

x(t) =Y [Ce” + Dye "]
i=1

tel (6)

Step 3: Obtain a transcendental equation for the eigenval-
ues substituting the candidate eigenfunction into (3). Substi-
tute the candidate eigenfunction of the form (6) into (3) and
obtain an homogeneous linear system of 2n equations in the
2nunknowns C,, D,, £ =1, ..., n. Looking for non-zero so-
lutions, the determinant of the coefficient matrix must be zero,



a condition which yields the transcendental equations for the
eigenvalues. Finally, the non-zero solution of the system gives
the coefficients characterizing the eigenfunctions up to a scale
factor. All the mathematical details of this procedure can be
found in [4].
Example — As an illustrative example, we apply the above
procedure to the single-pole linear channel with transfer
function

1
1+s/2aW)

where W is the 3-dB bandwidth. The impulse response for this
channel is

H(s) =

h(t) = 2xWu(t)e &V

where u(¢) denotes the unit step function. The Laplace trans-
form of the energy kernel for / = R is the ratio of the two
polynomials:

2

QrW)?

Let us assume that input signals have duration 7" and the finite
output time interval is / = [0, T,]. Hence the energy kernel

3{(1‘7 7:) —aW [e—ZTrWlt—r\ _ lerW(H—r—ZTU)]

N(s?) =1 and D) =1-

is certainly not time-invariant. However, we may specialize
general formulas or apply Franks’ method [5]. In both cases,
taking the second derivative of the equation

T
)\/l//(t) :/ 'l//(t)n'W [e—ZTl'Wll—T‘ _ eZTrW(l+T—2T0)] drt (7)
0

we obtain the differential equation

d*y(t
A ;;2( ) _ —QRAEW) Y (1) + A2 W)y (1)
The characteristic equation of this linear differential equation

18

| 52 1
Qrw): A
The roots are purely imaginary 0 = +27jWz with z =

1/Xx — 1 and the real form of the eigenfunctions is
g
Y(t) = Ccos(QnWzt) + Dsin(Qr Wzt)

Substituting one of these expressions into (7), we obtain for z
the following transcendental equation:
[e ™ EDA+ ) + (1 -]
-sin2rWTz,) + 2z, cos2nWTz,) =0
Note that when 7, — oo, we obtain Youla’s solution [12]
Zopy = co(@WTz,, ), 2,, = —tan(mrWTz,,) forn =
1,2,.... When T, = T, we obtain tanRQrWTz,) = —z
The real eigenfunctions are

¥, (1) = Alz, cosRuWTz,) +sinRrWTz,)]

ne

where the normalizing factor A can be easily computed. Once
z,, is known the corresponding eigenvalue A, is obtained as
_ 2
by =1/(1+22).
Let us now consider the case with the time offset J =
(%), t, + T]1. Consequently, ¥, (¢, 7) is not time-invariant but
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it can be shown that the eigenfunctions have the same form
as for t, = 0 and the eigenvalues are obtained from the
same equation with ¢, as a parameter. The received signal y(z)
evaluated at times ¢, and #, + T gives

y(t()) =
yit,+ 1)
Hence we obtain the equations

[(1 =22 + e W (1 4 z})]tan 27z, WT) + 2z, = 0

Asin 2z, Wi,)
Ae W sin 2mz, WT)

e~ W sin®> 2wz, WT) — sin® 27z, Wt,,) = 0

where we wrote £, for ¢, as the optimal delay which depends
on the order n of the eigenvalue A, = 1/(1 + z2).

These two equations suggest an iterative method for calculat-
ing 7, and z,,. Starting with a tentative value of z*’, near to the

value obtained for 7,,, = 0, from the first equation we estimate
(1)

ty, as
o -l -2z cot 2z, WT) — (1 — [z{V]%)
t — ln n n n
AW L+ @)

Then we substitute into the second equation and we solve for
2. We compute 7 using the first equation and so on.

Results for 2WT = 1, 2, 4 are reported in Table 1, where
we considered rectangular and sinusoidal pulses as well as
optimal signals. Both the energy transfer ratio and the energy
ISI ratio have been evaluated for different combinations of the
parameters. The results show the performance enhancement of
optimal vs. standard waveforms. J is chosen as ¢, + I in order
to maximize €, with respect to #,. The results show that the
performance of the sinusoidal signal set is very close to that of
the optimal set for c = 2 and 4 in terms of € , and € ;. A larger
difference is observed for the rectangular signal set. Focusing
on the energy ISI ratio, we note a larger advantage in using the
optimal signal set.

Numerical computation of eigenvalues and eigenfunctions
is generally a critical issue because of possible numerical
instability. This motivates resorting to analytic solutions in
special cases to check the accuracy of the numerical results
obtained. The computation of the eigenvalues is amenable to
the solution of a transcendental equation.

4 Conclusions

In this paper we considered the problem of computing sets
of signals which convey the maximum amount of energy in-
cluded in the signaling time interval. Reference has been made
to the class of linear filters with rational transfer functions. We
have shown that the computation of the eigenvalues can be
traced back to the solution of a transcendental equation and the
eigenfunctions are linear combinations of possibly complex
exponential time functions with exponent coefficients which
are algebraic functions of the eigenvalues. We have also com-
puted eigenvalues and eigenfunctions by direct numerical in-
tegration and numerical optimization. The agreement between
the results obtained with the two methods validates the “nu-
merical” technique, which is preferable or unavoidable when
dealing with complex rational transfer functions.
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| Waveforms | i | A toi €r €, | n (%) |
2WT =1
Rect. pulses 1 0.695 0.549 26.5
Sin(rt) 1 0.666 0.579 14.9
Opt. on [ 1| 0.6172 0.680 0.6172 10.2
Opt.onty+ 171 | 1 | 06683 0.121 | 0.7027  0.6586 6.7
Opt. on R 1 | 0.7105 0.7105  0.5824 22.0
2WT =2
Rect. pulses 1 0.8410  0.7620 10.4
2 0.5497  0.4830 13.8
Sin(rrt) 1 0.8510  0.8254 3.1
Sin(2mt) 2 0.5794  0.5398 73
Opt. on / 1 | 0.8410 0.8598  0.8410 22
2 | 0.5609 0.5969  0.5609 6.4
Opt.onty+17 | 1 | 0.8591 0.133 | 0.8650 0.8516 1.6
2| 05860 0.117 | 0.6139  0.5860 4.8
Opt. on R 1| 0.8718 0.8718  0.8233 59
2 | 0.6172 0.6172  0.5395 14.4
2WT =4
Rect. pulses 1 0.9204  0.8806 45
2 0.7619  0.7224 5.5
3 0.6164  0.5832 5.7
4 0.4831  0.4496 74
Sin(rt) 1 0.9500  0.9456 0.46
Sin(2wt) 2 0.8255  0.8127 1.57
Sin(3rt) 3 0.6767  0.6583 2.8
Sin(4mt) 4 0.5398  0.5199 3.8
Opt. on [ 1 | 0.9490 0.9526  0.9490 0.4
2 | 0.8220 0.8329  0.8220 1.3
3 | 0.6703 0.6870  0.6703 2.5
4 | 0.5309 0.5499  0.5309 3.6
Opt.onty+17 | 1 | 09519 0.067 | 0.9553  0.9519 0.36
2 | 0.8312 0.067 | 0.8405 0.8312 1.1
3] 0.6824 0.067 | 0.6971 0.6824 22
4 | 0.5417 0.067 | 0.5600 0.5417 34
Opt. on R 1 | 0.9553 0.9553  0.9441 1.2
2 | 0.8410 0.8410  0.8094 39
3 | 0.6982 0.6982  0.6560 6.4
4 | 0.5609 0.5909  0.5205 7.7
Table 1 — Energy transfer for a single pole low-pass filter

with “optimal”, “rectangular” and ‘sinusoidal” signals.

Knowing the form of the eigenfunctions is also important
for practical implementation. It may be easier to generate lin-
ear combinations of exponential and trigonometric functions
rather than to interpolate inaccurate samples obtained by nu-
merical integrations.

Finally, we introduced the energy ISI ratio, a second figure
of merit besides the classical energy transfer ratio, which is
significant if the optimization aims at reducing ISI.
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