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RÉSUMÉ

On étudie l’adaptation des coefficients du filtre spatio-temporel utilisé
à la station de base pour l’égalisation du canal et la réjection
des brouilleurs, quand la longueur de la séquence d’apprentissage
est insuffisante pour faire appel aux estimateurs classiques. Un
critére semi-aveugle et l’algorithme de traitement correspondant sont
proposés, en exploitant la présence d’une séquence d’apprentissage
courte et la propriété de module constant des signaux. En fait,
c’est une nouvelle version de l’estimateur régularisé, adapté aux
particularités des radiocommunications mobiles numé riques.

ABSTRACT

The solved problem is the adjustment of the spatio-temporal filter
at the base station, for channel equalization and jammer rejection,
when the length of a training sequence is not sufficient to use
standard estimators. A semi-blind criterion and processing algorithm
are proposed, which exploit the presence of a short training sequence
and the constant modulus property of the signals. It is a new version
of the regularized estimator, which is adapted to the features of digital
mobile radio communications.

Introduction

In digital mobile radio communications the data are transmit-
ted in bursts and a training sequence of short duration is at-
tached to each burst. The length of this sequence (26 symbols
for the GSM) may not be sufficient to adjust the coefficients
of the spatio-temporal filter to equalize the channel and reject
the jammers when an array of sensors together with temporal
filters are used in the base station. This difficulty can be over-
come with the help of suboptimal [1] or blind algorithms [2,
3]. Both approaches have known disadvantages. For example,
a global convergence of the popular blind fractionally spaced
constant modulus (CM) algorithm is established only for an
infinite number of data (mathematical expectation in CM cri-
terion) [3 and others]. It has been pointed out in [4,5] that com-
bining training and blind techniques can be effective, and semi
blind criterions and algorithms for single input multiple out-
put channel identification based on maximum likelihood (ML)
principle have been proposed. The necessity of complete mod-
elling for ML approach limits the aplication area of these al-
gorithms.

A semi-blind approach based on a least squares (LS)
criterion regularized by means of the CM function is proposed
here to find the coefficients of the spatio-temporal filter in
the general case, with jammers and unknown lengths of
propagation channels. It is shown that it allows to reduce the
dimension of the optimized CM function by the length of the
training sequence. An algorithm for the minimization of the

proposed criterion is derived. Its efficiency is demonstrated
by simulations, in situations where the length of the training
sequence is not sufficient to use the standard regularized LS
estimator and the limited volume of data in one burst is not
sufficient to use the least squares CM algorithm (LSCMA) [6].

Problem formulation

The signal model and the general spatio-temporal filter struc-
ture are shown in Fig.1.The notations are the following: K :
number of antenna array elements; sn : desired signal; M: num-
ber of jammers din , i D 1:::M; xin, i D 1:::K : antenna array
outputs; òln , l D 1:::K : additive uncorrelated noise with vari-
ance õ 2

ò ; G: propagation channels; OsnÄD D WÉXn: desired
signal estimator; XT

n D fXT
1n; :::;XT

K ng: .K L Ç 1/ input sig-
nal vector, where XT

in D fxin; :::; xi.nÄLC1/g for i D 1:::K ;
L: number of coefficients of FIR filter in each spatial channel
WT

i D fwi1; :::; wi L g; WT D fWT
1 ; :::;WT

K g: .K L Ç 1/ vec-
tor of weight coefficients; D: delay. All signals assumed zero
mean.

The features of this signal model in mobile radio commu-
nications application are the following:

1. Propagation channels G can be approximated by FIR
filters of length Lg [3]. Both G and Lg are unknown.

2. The desired signal sn has the following temporal struc-
ture: data are transmitted in bursts of length Nb; the training
sequence of length N < Nb is transmitted inside each burst.
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So, we have n D 1:::Nb for all signals in Fig.1, excluding
n D ns :::.ns C N/ for the training sequence, where ns is the
starting training symbol. Propagation channels can be assumed
to be stable during one burst.

3. The desired signal has CM property.
4. Jammers are independent of sn . They may have either the

same structure (multi-users) or another one.
The classical approach to the estimation of the weight

vector is to minimize the LS criterion on the learning interval

OWN D arg min
W
fNÄ1

nsCNX
nDns

j snÄD ÄWÉXn j2g: (1)

The solution of the problem (1), given N ï K L linearly
independent input vectors Xn is

OWN D ORÄ1 OP; (2)

where OR D NÄ1
PnsCN

nDns
XnXÉn; OP D NÄ1

PnsCN
nDns

sÉnÄDXn

Since [7] the standard way to find the estimator when
N < K L is to replace (1) by the regularized criterion

OWRN D arg min
W
f 1

N

nsCNX
nDns

j snÄD ÄWÉXn j2 CéWÉWg; (3)

OWRN D . ORC éI/Ä1 OP; (4)

where é > 0 is a regularization coefficient. The performance
of the regularized estimator (4) is studied in [7] in the spatial
processing case and for uncorrelated input vectors Xn .

The regularized LS estimator (4) can be applied to gen-
eral signals. It does not reflect the signal features pointed out
above. The problem is to find another regularized estimator
which takes into account the features of the digital mobile
radio communications environment, and to compare its per-
formance (needed length of the training sequence) with the
known solution (4).

Semi-blind optimization criterion

An alternative regularization of the basic LS criterion (1) is
proposed below, which takes into account the CM property of
the desired signal

OWsb D arg min
W
fNÄ1

nsCNX
nDns

j snÄD ÄWÉXn j2 C

éb NÄ1
b

NbX
nD1

.jWÉXn j Ä1/2g: (5)

where éb is a regularization coefficient.
This is the semi-blind criterion for the adjustment of the

spatial-temporal filter shown in Fig.1 which uses both the
training sequence and the information data of one burst. Using
different éb, one can get different versions of the general
criterion (5):

- the choice éb !1 leads to the standard CM criterion

OWb D arg min
W
fNÄ1

b

NbX
nD1

.jWÉXn j Ä1/2gI (6)

- the choice éb ! 0 leads to the following constrained
optimization problem

OWsb D arg min
W2†
fNÄ1

b

NbX
nD1

.jWÉXn j Ä1/2g; (7)

where† is the set of all vectors W which satisfy the following
linear equation

ORW D OP: (8)

with an infinite number of solutions when rank. OR/ < K L.

So, the two limiting cases of (5) can be used for estimating
of W. This situation makes the criterion (5) significantly
different from (3) because the case é !1 in (3) leads to the
white noise solution for any input signals. That means at least
that the strategy of selecting the regularization parameters
must be different for these criteria.

The case éb ! 0 is interesting because it helps to
understand the area of applicability of the proposed approach.
Indeed, all solutions of (8) can be expressed as follows

W DWp C
K LÄNX

iD1

vi Ui ; (9)

where Wp is a particular solution of (8), for example Wp D
OR# OP, where OR# is the pseudoinverse of OR; Ui ; i D 1:::K LÄN

are .K L Ç 1/ basis vectors of the nullspace of matrix OR;
V D fv1:::vK LÄN g is a new ..K L Ä N/ Ç 1/ weight vector.
Substituting (9) into (7) we get the new reduced dimension
CM type optimization criterion

OVsb D arg min
V
fNÄ1

b

NbX
nD1

.j ypn C VÉUÉXn j Ä1/2g; (10)

where ypn D OPÉ OR#Xn, U D fU1:::UK LÄN g. The final weight

vector OWsb can be calculated in accordance with (9)

OWsb D OR# OPC
K LÄNX

iD1

Ovsb i Ui : (11)

It is worth emphasizing that a similar limit situation exists
for the standard regularized LS criterion (3): é ! 0 leads to
OWRN D OR# OP. This case is adequate for both criteria (3) and

(5) when õ 2
ò D 0. The usual choice of é in (4) with noise is

é ' õ 2
ò [7]. The question about the optimal choice of éb in (5)

in the presence of noise requires a separate study. In this paper
it will be considered by simulations.

The most interesting aspect in the problem formulation (7),
(8) is the following: the semi-blind criterion (5) is in fact
(exactly in the noiseless case when éb ! 0) the modified CM
criterion with a dimension reduced by the length of the training
sequence. This dimension decrease for fixed volume of data
opens the possibility to use CM criterion in situations which
are adequate to mobile radio communications when spatio-
temporal filter coefficients have to be estimated for each burst
of data with the short training sequence inside.
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Optimization algorithm

After computation of the gradient and the Hessian of the
optimization function in (5) we get the following Gauss-
Newton type off-line optimization algorithm

OWkC1
sb D OWk

sb C . ORC éb
ORb/
Ä1[ OR OWk

sb Ä OPC

éb.
ORb Ä ORbb.

OWk
sb//
OWk

sb]; (12)

where ORb D NÄ1
b

PNb
nD1 XnXÉn ,

ORbb.
OWk

sb/ D NÄ1
b

PNb
nD1 j OWkÉ

sb Xn jÄ1 XnXÉn.
Using zero initialization for reduced other weight vector V

in (11) we get the following initial vector for the algorithm
(12) OW0

sb D OR# OP or for the general case with noise

OW0
sb D . ORC éI/Ä1 OP: (13)

Consequently, the regularized semi-blind algorithm for an
estimation of spatial-temporal filter coefficients is given by
equations (12) and (13).

The particular cases of this algorithm are LSCMA [6] for an
undefined initialization and éb !1 , and semi-blind LSCMA
initialized by the training sequence (13) for éb !1 only.

Simulation results

Simulation scenario. Independent random signals and jam-
mers are of the type .Ü1 Ü j/=

p
2. FIR channels filters have

random complex coefficients with zero mean and unit vari-
ance. The simulation parameters are: K D 5, Lg D 5, D D L,
õ 2
ò D 0:08, ns D 10. Parameters M , L, Nb , N are variable.

Experiment 1. Let us consider the behavior of LSCMA
when the length of a burst is Nb D 150. It is known that
Gauss-Newton type algorithms (LSCMA is this type of off-
line algorithm) have a local convergence. So, it is possible
to expect, that for a sufficiently large number of iterations,
for some initialization the resulting weight vector for LSCMA
corresponds to a local minimum of the CM criterion JCM .Nb/.
The belonging of the resulting vector to the desired (adequate
to the CM signals or their delays) or to an undesired minimum
can be found by the rule JCM .Nc/ < ë, where Nc ù Nb
and ë is some threshold. The estimations of the frequency of
hitting on a desired CM minimum are presented in Table 1
for Nc D 1000, ë D 0:015 and the following stopping rule
k OWkC1 Ä OWkk2=k OWkk2 < 10Ä4. The number of realizations
is 50 with 50 random initializations for each one.

One can see from Table 1 that Nb D 150 is practically
sufficient for a global convergence only for a few adjustable
coefficients in very simple environment without jammers.

Experiment 2. The other possibility to get one of the
desired weight vectors by LSCMA is to increase the number
of processed symbols. We get 9.7% for Nb D 500 and 98.1%
successful trials for Nb D 10000 in the conditions of the last
column in Table 1 (with 0.1% successful trials for Nb D 150).

The constellation pictures in Fig.2 - 4 for this environment
reflect the typical situation for presented experiments when
most of the resulting weight vectors are "good" CM solutions

without any relations with initial CM signals. One can see
that the "quality" of spurious CM solutions decreases with
increasing of the data volume Nb ; for some undefined large
Nb , spurious solutions have practically disappeared.

Conditionally speaking the known theory about globally
converged fractionally spaced CMA [3 and others] deals with
Fig.4 and the first column in Table 1. But our problem
corresponds to Fig.2 and the last column in Table 1: in that
case, LSCMA fails while our algorithm is successful as shown
below.

Experiment 3. The same data as in the last column of
Table 1 are used in Fig.5 for the algorithm (12), (13) with
variable N . The performance of the proposed algorithm in this
environment is presented in Fig.6 by averaging 50 realizations
of signals and propagation channels, in Fig.7, 8 a typical
realization is displayed for different éb when é D 0:08. We
use the same stopping rule as previously with LSCMA. For
comparison, the performance of (4) with é D 0:08 is plotted
in these figures too.

These simulations show that, as soon as the training se-
quence length N is greater then 22, our algorithm yields al-
most the same MSE as the standard regularized LS estimator
with N ù K L. The curves in Fig.7 show that the the choice
of the intermediate éb (curve 3) gives better performance com-
pared with the extreme cases (curve 1 and 2) for variable N
with given Nb.

Conclusion

The semi-blind criterion for the adjustment of the spatial-
temporal filter is presented. It reduces a dimension of the CM
criterion by the length of the training sequence. This allows to
use CM criterion when spatio-temporal filter coefficients have
to be estimated for each burst of data with the short training
sequence inside.
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M D 0, L D 1 M D 1, L D 5 M D 2, L D 7

(K L D 5) (K L D 25) (K L D 35)

88.9% 9.7% 0.1%

Table.1. Estimations of a frequency of hitting to a local CM minimum
adequate to CM signals or their delays with random initialization of
LSCMA when Nb D 150
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Figure 1 — Signal model and spatial-temporal filter
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Figure 2 — Constellation picture for spurious CM local minimum
when Nb D 150. There are 0.1% detected successful CM minimums
with random initialization of LSCMA
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Figure 3 — Constellation picture for spurious CM local minimum
when Nb D 500. There are 9.7% detected successful CM minimums
with random initialization of LSCMA
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Figure 4 — Constellation picture for desired CM local minimum
when Nb D 10000. There are 98.1% detected successful CM mini-
mums with random initialization of LSCMA
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Figure 5 — Estimations of a frequency of hitting to the desired CM
minimum for the proposed algorithm for éb D 1 when Nb D 150,
M D 2, Lg D 5, K D 5, L D 7
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Figure 6 — Averaged performance of the proposed algorithm for
éb D 1 when Nb D 150, M D 2, Lg D 5, K D 5, L D 7
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Figure 7 — Performance of the proposed algorithm for a typical
realization for éb D 0:01 (1 - constrained CM criterion (10)), éb D
1000 (2 - LSCMA with initialization (13)), when Nb D 150, M D 2,
Lg D 5, K D 5, L D 7
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Figure 8 — Performance of the proposed algorithm at the experi-
ment in Fig.7 when éb D 1 (3)


