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RESUME SUMMARY

Nous  proposons une nouvelle méthode de A new vector quantization structure for reducing
quantification vectorielle ayant une complexité the complexity of the vector gquantization is
réduite, impliquant l'extraction et le codage séparé proposed., This method involves extraction and
de certaines caractéristiques du signal telles que la separate encoding of features of the signal such as
moyenne et la variance. La comparaison est faite average, variance, etc.... The basic idea is
avec les quantificateurs & recherche exhaustive, sur described, and two cases, the extraction of the
des criteres de complexité et de performance. average, or the extraction of the average and the
variance, are studied. The comparison with the full
Au vu des simulations de codage direct de parole, . search quantizers is done, based on the complexity

on  observe un comportement dégradé mais encore and performance.

satisfaisant, avec une complexité de recherche et une

taille mémoire sensiblement réduite. According to results of our experimental
simulations for speech waveform coding, using such a
new technique with better combinations, both the
search complexity and the memory requirements can be
substantially reduced with a degraded but still
satisfactory encoding performance in comparison with
‘the corresponding full search vector quantization at
the same rate. An improvement of the performance can
be obtained using such a new technique with a greater
dimension at the same level of complexity.
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1. Introduction

A K—dimensional vector quantizer (VQ) is a mapping
of K-dimensional Euclidean space RK into a finite
subset of RK. It assigns to each input wvector x a
reproduction vector y=q(x) drawn from this finite set
of N reproduction vectors, called the codebook which
is denoted by CB={yj;i=1,2,...,N}, where y; is called
a codeword for each i. If we define a distrotion
d(x,y) which measures the cost of reproducing a
vector x by y, then the best mapping or the optimal
encoding is one which selects as the reproduction
vector for x the particular codeword y that minimizes
d(x,y). The study of the vector quantization is to
design the optimal codebook in the sense that
minimizes the average distortion and to find the
associated effective optimal encoding rule.

A very important and effective method for optimal
vector quantizers design is the LBG algorithm which
was proposed and extensively studied by Lind, Buzo,
and Gray [1]. The problem of existing techniques is
the complexity: wvery large randomly generated
codebook which must be stored, and an exhaustive
search through such a codebook, or so called full
search encoding process which is necessary to find
out the best codeword. The computational complexity
of the search can be evalueted by the numbers of
additions ni, the numbers of multiplications nyg, and
the numbers of comparisons required per dimension.
For the rate r bits/dimension, dimension K (codebook
size N=2TK) full search quantizer we have [2]

ny= N =2tK 1.1
ny= 2N =2(1+rK) (1.2)
neov=(N-1) /K= (28K-1) /K {1.3)
The memory (real numbers) denoted by M, for the
storage of the codebook is
Ma=K.N=K. 2K (1.4)
Several attempts have been made to reduce the

complexity [2-7]. In this paper we propose a new
codebook structure which reduces the codebook size
and then reduces the search computations.

2. Basic idea

When features such as average and variance are
extracted from a signal, the dynamic range of this
signal is reduced, one may expect to quantize this
signal with a smaller size codebook. That proposes
another vector quantization technique which may
greatly reduce both the memory and the encoding
complexity.

This technigue can be illustrated by Fig.2.1. The
features uj,...,up of the input vector x of a signal
to be quantized are first extracted. After the
extraction operation, a new vector, denoted by x,, is
formed, then each feature and the new vector are
guantized by a scalar quantizer and a LBG vector
quantizer respectively, The reproduction vector is
produced from the reproduction vector of the new
vector and the reproductions of features by a
combination function which is a inverse procedure of
the extraction operation.

such a quantizer requires m scalar codebooks for
encoding m features uj,...,up; and a vector codebook
for encoding the new vector x,. Suppose that a
vector training sequence {Xj;j=1,...,L} is provided,

There are simultaneous, independent and related
works by Sabin, Baker, and Gray [5],[6].

a new vector training sequence {x,(1)} and m scalar
feature's sequences {uj(3)},...,{up{3)} can then be
formed by the extraction operation. Each scalar
codebook  CBj,...,CBy is designed on its proper
feature's training sequence by the IBG algorithm of
K=1 or a optimal scalar quantizer design algorithm,
while the vector codebook CB, is designed on the new
vector training sequence by the LBG algorithm, as
described in Fig.2.2.
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Fig.2.2. Codebook design of a vector quantizer with extracting
features: structure I (Q-quantizer)
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When m >1, it is possible to use another structure,
that is, to design two vector quantizers: one for
the m-dimensional feature wvector u=(uj,...,up);

another for the new vector x,. That is, m scalar
quantizers in Fig.2.1 are replaced by a vector
quantizer, as illustrated in Fig.2.3. For
convenience, we call the structure of Fig.2.1
structure I and that of Fig.2.3 structure II. Two

vector codebooks are required for this structure:
CB, for the feature vector, CBy for the new vector.
The design procedure is depicted in Fig.2.4. 1In
section 4, we will use these two schemes and compare

their performances.,
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Fig.2.3. VD with extraction and separating encoding of
features: structure II (VQ-Vector quantizer)
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Fig.2.4. Codebook design of a vector quantizer
with extracting features; structure II
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Features which are extracted and separetely encoded
in our method may be the average, the energy, the
variance, etc. In this paper we only study two
cases: (1) Vector quantization with extraction of
the average; (2) Vector quantization with extraction
of the average and the variance.

Generally, neither codebook nor encoding operation
are optimal. The reduced complexity may be worth the
performance degradation.,
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The basic idea of our technique, is that the
features and the new vector are throughout separated
and are processed independently, codebooks are
designed individually using LBG algorithm and a
scalar optimal algorithm on each proper training
sequence. This is also the principal difference with
{51,061,

3.V with extraction of the average(VQEA)

First, we conside the simplest structure: vector
quantization with extraction of the average(VQEA).

3.1. Quantizer structure

We define the average of a vector x=(X1,X2,...XK)
as

K
C= (& X{)/K (3.1)
i=1
and the new vector, i.e., the centred vertion of the
vector as

=X—~C=(8] ;82,+++,3K)=(X1—C,X2—C, .«  XKk=<C) (3.2)
where ¢=C1, 1=(1,1,...,1). Obviously we have
K
S aj=p (3.3)
i=1

The encoding operation with such a vector quantizer
for a given input vector x begins by extracting the
average from it. The new vector a and the average C
are then encoded by a vector encoder and a scalar
encoder respectively using the nearest neighbor or
the minimum distortion rule. A reproduction vector &
which minimizes the distortion between a and & and a
reproduction average & which minimizes the distortion
between C and & are selected. The index 1 which
represents the reproduction of C and the index j
which represents the reproduction vector of a are
transmitted, The decoder selects the reproduction
pair (&,a) from the ROM according to the index pair
(i,j), and the final reproduction vector is

§=8+8=(81+8,871+8, ... , 8z H+3) (3.4)
where ¢=81.

For designing such a quantizer, a training vector
sequence TS={xi; Jj=1,2,...,L} 1is provided and the
average of each vector of this vector sequence is
extracted. A scalar training sequence TSe which
consists of averages and a new vector training
sequence TSy which consists of new vectors are
formed:

TSc={Cj; 3=1,2,...L}

TSa={aj; 3=1,2,+00,L}

(3.5(a))
(3.5(b))

Run the LBG algorithm on these two. new training
sequences, or, run the LBG algorithm on the new
vector training sequence TSy and run a optimal scalar
guantizer desing algorithm on the new scalar training
sequence TSc, two corresponding codebooks CB: with
size No and CBy with size Ny are designed.

Now we demonstrate that although such a quantizer
is not optimal, the encoding operation described
above is optimal for such a given codebook structure
for the weighted squared error distortion measure
with some condition in the sense that the pair (&,&)
minimizes the distortion d(x,y).

In fact, for the weighted squared error distortion
measure, the distortion between the input vector x
and its reproduction vector y for such a vector
quantizer is

a(x,y)=(x-y) 'W(x-y)
=((cta)-(&+8)) [W((c+a)-(&+3))
=((c-8)+(a-8)) "W((c-&)+(2-3))

Where "'" denotes the transpose. W is a symmetric,
positive definite matrix., Expanding this equation,
we have ' :
K K
d(x,y)=(c-8)2 &= w5
i=1l j=1
K K K K
+2(c-8) ( I - wy,jai-== T-wy,idi)
i=1 j=1 i=1 §=1

+(a—8) '"W(a-a) (3.6)

From (3.3) we have T aj=@. We also notice that &;
is a codeword of codebook CBy, and for our codebook
design structure described above, this codebook is
designed on a vector training sequence TS5 of
(3.5(b)) using the LBG algorithm. In the training
sequence TSy, each vector aj is extracted from x3j of
the training sequence TS and satisfies formula (3.3).
Thus, according to the LBG algorithm and the appendix
of [8], we have

K K n X n K R
T &8 =T (Zai/m=(/m ( ZZa; (3)=0(3.7)

i=1 i=l j=1 =1 i=1

where n is the number of training vectors in the
corresponding partition. If we constrain the general
matrix W such that

K K

b Wi,s= hme wg,i=constant=tg (3.8)

s=1 s=1
The second term of (3.6) equals zero and the
distortion is then i

d(x,y)=Ktg(c-8)2 + (a-a) 'W(a-3) (3.9)

Thus, the optimal pair(&,8) that minimizes the
distortion can be found by selecting & to minimize
(c-8)2 and selecting & to minimize

(a—a) "W(a-a)

in the same time. This is what we do in the encoding
operation described above. That 1is, the encoder
described above is optimal for such a given codebook
design structure for the weighted squared error
distortion measure if the condition (3.8) is
satisfied.

For the sguared-error distortion measure, W=I(an
identity matrix), the condition of (3.8) is always
satisfied, the distortion for such a quantizer is

K .
a(x,y)=K(c-8)2 + T (aj-31)2
i=1
Thus, for the squared error distortion measure the
encoder that we propose here is always optimal for
such a given codebook structure.

(3.19)

3.2, Complexity

Now we consider the complexity of such a ‘quantizer
which has the vector dimension K, the average -
codebook size Ng, and the centred version codebook
size Nz. We devote Rq bits to the average and Ry
bits/vector to the new vector, and we suppose that

Ne=2R¢, Ny=2Ra (3.11)

The memory requirement for the storage of codebooks

for such a new quantizer is

Me=No + KNg=2RC + K2Ra (3.12)

The separation of the average requires 2K
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"additions(difference), and 1 multiplication(division)
per vector. Encoding of the average can be performed
by comparing value ¢ with that of codewords in
codebook CB.. This requires (Ng-1) comparisons per
vector. Encoding of the centred version can be
performed by a usual full search. This involves KNj
multiplications, 2KNy additions, and {Na—-1)
comparisons per vector, Thus, we have

ny= Na + 1/k =2Ra 4+ 1/K (3.13)
ny= 2Nx+2 =2 (1+2R3) (3.14)
ncom= (Ne+HNa~2) /K (3.15)

The reduction of the complexity (memory reguirement
and encoding computations) 1is apparent when one
compares formulae of (1.1-1.4) with that of
(3.12-3.15) for the same dimension and same
information rate, and many numerical examples are
shown in section 5.

4. VQ with extraction of the average
and the variance (VQEAV)

Now, we consider a more complicated structure:
vector quantization with extraction of the average
and the variance (VQEAV).

4.1. Quantizer structure

With the same definition of the average C of a

vector xX=(X1,X2,+..,%) as (3.1), its variance is
defined as
K
V2= 5T (%02 (4.1)

i=1
We define the new vector as

Z= (%) /V=(Z1,22/ 4+ » yZK)
=(I/V) (X1—CyXp=Cy e v o 1 Xg—=C) (4.2)

and the vector can be expressed as
X = 2V + C=(Z1VHC, ZoVHC, + oo, ZRVHC) (4.3)

According to our basic idea, the encoding operation
for such a quantizer for a given input vector x
begins by extracting the average C and the variance V
from it. Then C, V and the new vector z are encoded
by two scalar encoder and a vector encoder
respectively using the nearest neighbor or the
minimum distortion rule. A reproduction vector %
which minimizes the distortion between z and %, a
reproduction average & which minimizes the distortion
between C and & and a reproduction variance ¥ which
minimizes the distortion v and ¢ are selected. . The
index i which represents the selected &, the index j
which represents the selected ¥ and the index s which
represents the selected %2 are transmitted. The
decoder selects the reproductions &, ¥, and 2 from

the ROM according to the (i,j,s), and the final
reproduction vector of x is

y=U% + &

=(92)4+8,020+8, ..., 02 ) (4.4)

For designing such a quantizer, a training vector
sequence TS:{Xj;j=l,2,...,L} is provided and the
average and the” variance of each vector of this
vector sequence is extracted. Then two scalar
training sequence TS, and TSy which consist of
averages and variances respectively and a vector
training sequence TS, which consists of new vectors
are formed:

TSc={C4; =1s2,+0-,L}
TSy={v3; q=l,2,...,L} (4.5)
TSz={2j; J=1,2,+..,L}

multiplications per vector.

By running the LBG algorithm on these new training

sequence, or, by running the LBG algorithm on new
vector training sequence and running an optimal
scalar quantizer design algorithm on two new scalar
training sequences TS, and TSy, three corresponding
codebooks CBe CBy and CBp with sizes No, Ny and Nz
respectively are designed.

Another structure, structure II of such a new
quantizer, processes jointly parametres C and V as a
two—dimensional vector. Two scalar codebooks CB; and
CB, in the structure I are replaced by a vector
codebook CB.y with size Ngy which is designed on a
vector training sequence TSCV={(c-,Vj); 3=1,2, 400,01}
using the LBG algorithm if e “vector training
sequence TS={Xj; j=1,2,...,L} is provided. Two
scalar encoders in the structure I are replaced by a
vector encoder which reprensents the vector (C,V) by
a codeword of the codebook CBgy using the nearest
neighbor or minimum distortion rule.

4.2. Complexity

For such a quantizer of structure I with dimension
K, the average's codebook size Ng, and its
corresponding bit rate R, bits(Ng=2R€), the
variance's codebook size N, and its corresponding bit
rate Ry (Ny=2RV), and the new vector's codebook size
N, and its corresponding bit rate Rz per
vector (N,=2R?), the memory requirement for the
storage of codebooks is

Me=Ng + N, + KN,=2RC + 2RV 4 goRz (4.6)

The analysis of the encoding complexity is similar
to that of section 3.2, but the extraction requires
more computations: 3K additions, 2K+2
Then we have

ny=N, +2 + éZ/K =2RZ+2+ (2/K) (4.7)
ny=2N,+3=2 (Rz+1)43 (4.8)
neoM= (NeHNg+Nz—3) /K (4.9)

For a quantizer of the structure II with the
dimension K, codebook size NCV=2RCV of CBgy, codebook
size N,=2RZ of CB,, the memory requirements for the
storage of codebooks is

Me=2Noy + Kiy=2(Rov+l) 4 goRz (4.19)
Same computations for extracting C and V as that of
the structure I are required. A two-dimensional and
a K-dimensional vectors are required for encoding.
So the encoding complexity can be expressed by

Ny=Np+2+2 (Ney+1) /K (4.11)
N4=3+2N5+4Nay/K (4.12)
Noom=(NztNey=2) /K (4.13)

The reduction of the complexity is then apparent
when one compares (1.1-1.4) with (4.6-4.13) for the
same dimension and same information rate, and many
numerical examples are shown in section 5.

5.Experimental simulations

The performance is studied by the application of
such a new technique into the direct speech waveform
coding. A set of simulations is organized as
follows: for a given bit rate r bits per sample or
R=rK bits per vector, the performance of a full
search vector quantizer with dimension K and N=2TK is
computed, and performances of all possible
combinations (Rg+Rc=R in VQEA, Rz +Rc+Ry=R in the
structure I of VQEAV, and Ry+R-y=R in the structure
of VQEAV) of the corresponding new vector quantizer
with same dimension are computed; then several cases
with different K or N=2YK are considered.
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The design of all codebooks was.on a long training
sequence of the real french speech, which consists of
645120 samples sampled at 1896hz using a 14 bits
linear PCM from three speakers (two men and one
woman). The splitting technique is used for the
initial guess of the design and 2.0¢5 is used as the
threshold. The squared error distortion is used, and
only the case of one bit per sample is considered.
Using these codebooks, we have encoded two french
sentences by the full search and the new method
respectively: one is inside of the training sequence
that is used for producing the codebook; another is
outside of the training sequence. Some results of
the performance in these experimental simulations
with computations of Mg, ny, ny and ncgy are given in
tables 5.1-5.4. More results are given in the doctor
dissertation of LU Luzheng. Here the signal to
(quantization) noise ratio (SQNR,db) is defined as
R(#)/D(q), R(#) 1is the input signal variance:
R(2)=E[ (x~Ex)2]; and D(q) is the expectation of the
minimum distrotion: D(q)=Edpin{x,q(x)), where d{.)is
the distrotion between the input vector and the
codeword of the codebook, and the minimum is taken
over all codewords in the codebook.

All the quantized speech sequences were decoded and
synthesized, all the decoded sequences from the full
search quantizers and most of the decoded sequences
from new quantizers are intelligible, and some better
combinations of this new structure have the
subjective quality wvery near to that of the
corresponding full search case.

From these objective and subjective results we have
some conclusions:

(1) In comparison with corresponding full search
cases at the same bit rate, if the vector dimension
is same and R=R4+R; for VQEA, or R=R,+R.#R; for
structure I of VQEAV, or R=R,+R., for structure II of
VQEAV, using such a new quantization structure (VQEA
or VQEAV), both the search complexity and memory are
substantially reduced. The performance is degraded
and for some combinations the performance degradation
is acceptable.

(2) For each given vector dimension, there is a
“optimal™ combination- with which the performance of
such a new quantizer is the nearest to that of the
corresponding full search . case, and this "optimal"
performance is improved with the increment of the
vector dimension. For VQEA, in the cases of K=6 or 7
of our simulations, the "optimal" point is nearly the
middle point of all combinations and both the average
and the centred version of the vector are important
in these cases. When the dimension is smaller, the
"optimal point" moves toward one terminal where the
avarage has more bits, 1In these cases, the average
is more important than the new vector for such a new
technique. When the. vector dimension 1is getting
larger, the "optimal point" moves toward another
terminal where the new vector has more bits. For
VQEAV, features are more important, because more
features are extracted. In our simulations, even in
case of K=8, the "optimal® point is at the side where

_ the features have more bits, For the structure I of
VQEAV, the average is more important than the
variance for the encoding performance. For each
given dimension, the inside "optimal" performance is
always better than the outside "optimal® performance.

(3) In comparison with corresponding full search
cases at the same bit rate, if the level of the
complexity is nearly the sawme,(In this case,
generally, Nz=N for VQEA, or Ny=N for VQEAV holds,
the number of multiplications per dimension is nearly
equal, and we can consider they have same order of
encoding complexity.) such a new structure with the

best combination has a performance improvement in
comparison with corresponding full search case
because of the increment of the dimension.

(4) In comparison with the system of VQEA, for each
best combination with same vector dimension(K>=4),
the performance of VQEAV is worse by #.5-1.3 db.
Generally speaking, these two systems are comparable.

(5) For same vector dimension and same bit rate.per
dimension, the best combination of the structure I
and that of the structure II of VQEAV are comparable.
The structure I is less complex.

Table 5.1. Results of full search vector quantizers
(r=1 bit/sample, 1lBkb/s, K—dimension, R-rate bit per vector,
n)trnuxbets of multiplications per sample, ng—numbers
of additions per sample, rs of comparisons per
sample, Me—memory, SQNR-signal to quantization noise ratio)

SQNR (db)

K=R| N |[nx |n noon| Me

inside |outside
1 2 |2 4 1 4 2.42 | 2.86
2 4 |4 16 1.5 | 8 6.53 | 6.86
3 8 |8 16 2.3 | 24 8.12 | 7.52
4 Jie l16 | 32 3.8 | 64 8.72 | 8.12 -
5 |32 |32 |64 6.2 | 168 | 9.54 | 8.67
6 {64 |64 | 128 16.5| 384 | 1d.05| 8.93
7 1128 {128 | 256 18.1| 896 | 1s.61] 9.1
8 |256 | 256 | s12 31.9| 2048 | 11.69] 9.66

Table 5.2. Results of vector quantizers of extracting the average
(R=Ry + Rg, r=R/K=1 bit/sample, 18kb/s, Ra-bit rate/vectorfor the
new vector, Rc-bit rate per vector for the average,Na—codebook
size for the new vector, Np—codebook size for the average.)

SQNR (db)
K=R | (R, ,Rc)| (Na,Nc)| ng n, noom| Me
inside| outside
(4,1) | (16,2) | 16.2 | 34.8 | 3.2 | 82 | 3.18 | 3.31
(3,2) | (8,4) [8.2 | 18,0 2 44 | 6.79 | 6.11
° (2,3) {(4,8) [4.2 | 18.8] 2 28 | 8.36 | 7.99
(1,4) {(2,16) [2.2 | 6.8 | 3.2 | 26 | 7.08 | 7.08
(5,1) | (32,2) [32.2 | 66.0 | 5.3 | 194 | 3.43 | 3.54
(4,2) | (16,9) |16.2 | 34.0 | 3 100 | 6.95 | 6.33
6 13,3 |@s8 [8.2 | 1182|2356 |8.76] 8.10
{(2,4) | (4,16) | 4.2 18.8 3 40 8.46 8.24-
(1,5) [ (2,32) |2.2 | 6.8 | 5.3 | 44 | 6.46 | 6.67
(6,1) | (64,2) [64.1 | 136.8} 9.1 | see | 3.74 | 3.83
(5,2) 1(32,4) |32.1 | 66.0 | 4.9 | 228 | 7.52 | 6.57
) (4,3) [(16,8) {16.1 | 34.8 | 3.1 | 126 | 9.52 | 8.43
(3,4) 1(8,16) {8.1 | 18.8 | 3.1 | 72 | 9.08 | 8.34
(2,5) |(4,32) |4.1 |18.8 | 4.9 | 68 | 8.15 | 7.89
(1,6) {(2,64) 2.1 | 6.6 |9.1 | 78 | 6.22 | 6.26
(7,1) | (128,2)[128.1} 258.8] 16 1926| 4.18 | 4.91
(6,2) | (64,4) {64.1 | 130.6| 8.3 | 516 | 7.85 | 6.71
(5,3) [(32,8) |32.1 {66.6 | 4.8 | 264 | 9.69 | 8.54
8 | (4,4) |(26,16)]16.1 |34.0 [ 3.8 | 144 | 9.44 | 8.72
(3,5) {(8,32) {8.1 |[18.6 [4.8 | 96 | 8.57 | 8.p4
(2,6) |(4,64) [4.1 |1e. |8.3 | 96 | 7.36 | 7.41
(1,7) {(2,128)|2.1 |6.6 |16 144 | 5.49 | 5.67




1140 ' L\/

Vector quantization with extraction and separate
encoding of features for waveform coding

e

Table 5.3, Results of vector quantizer with extracting the average Table 5.4. Results of vector quantizers with extracting
and the variance (structure I)(R=Rg+Rg+Ry,r=R/K=1 bit/sample,18Kb/s) the average and the variance (structure II)
R: + r: =] bit/sample, 18Kb/s)
SONR (db) (R=Ray + Rey, r=R/K /sample,
K=R |(Rz,Rc,Rv)| (Nz,Nc,W)| ng | ny | noom | Me SONR (db)
insidejoutside K=R| (Rz,Roy)l (Nz,Nev) ny n noom Me

inside| outside

(l,;l,l) (2,16,2) 4.3 2.8 30 7.78 | 7.84

(4,1) | (06,2) | 19.5] 36.6 3.2 84 2.80 | 2.25

(1,3,2) (2,8,4) 4.3 1.8 24 8.2 | 7.61

(3,2) | (8,4) 12 22.2 2.9 48 4.8¢ | 4.43

(1,2,3) (2,4,8) | 4.3 1.8 ] 24 | 6.29 | 5.73 5

NI NN

(2,3) | (4,8) 9.6 17.4 2.9 36 6.21 | 5.91

6 | (1,1,4) | (2,2,16) 4.3 2.8 38 2.96 | 3.84

(1,4) | (2,16) |18.8| 19.8 3.2 42 7.95 | 7.88

(2,3,1) (4,8,2) 6.3 11 1.8 34 7.52 | T.d6

(5,1) }(32,2) |35 68.3 5.3 196 | 1.63 | 1.78

(2,2,2) (4,4,4) 6.3 11 1.5 32 6.37 | 5.88

(4,2) | (16,4) | 19.6 | 37.7 3.8 184 | 4.48 ) 4.35
(2,1,3) (4,2,8) 6.3 11 1.8 34 3.9 | 3.17

6| (3,3 8,8 13 24,3 2.3 64 | 6,12 5.81
(3,2,1) | (8,4,2) | 18.3| 19 1.8 ] 54 | 6.86 | 6.01 @3 |68

11.7 | 2.7 3.8 56 7.25 | 6.74
(3,1,2) (8,2,4) 4.3 19 1.8 54 3.23 | 3.43 (2,4) | (4,16)

(1,5) |(2,32) ]15 ‘28,3 5.3 76 8.08 | 7.47

(4,1,1) | (16,2,2) 18.3] 35 2.8 198 | 2.92 | 3.32

(6,1) (64,2) | 66.9 | 132.1] 91 452 | 1.38 | 1.51

(1,5,1) (2,32,2). 4.3 7 4.7 48 7.27 | 7.35

7 1 (5.2 32,4) [35.4] 69.3 | 4.9 | 232 4.14 | 4.05
(1,4,2) 1(2,16,4) 4.3 7 2.7 34 | 8.14| 7.73 5.2) | 32,4

(4,3) (16,8) | 26.3 | 39.6 3.1 128 | 5.89 [ 5.54

(1,3,3) | (2,8,8) 4.3 2.1 k] 7.95 | 7.24

(3,9) (8,16) | 14.9 | 28.1 3.1 88 7.53 | 6.88

(1,2,4) | (2,4,16) 4.3 2.7 34 6.22 | 5.58

(2,5) (4,32) | 15.4 | 29.3 4.9 92 7.93 | 7.27

~N NP~

1,1,5) |(2,2,32) 4.3 4.7 48 3.83 | 3.97

(1,6) (2,64) | 22.6 | 43.6 9.1 142 | 8.24 | 7.42

(2,4,1) (4,16,2) 6.3 11 2.7 46 7.64 | 7.54

(7,1) (128,2) | 130.8| 268 16 1928 | 1.47 | l.68
(2,3,2) | (4,8,4) 6.3 11 1.9 40 8.15 | 7.5¢ 3

: (6,2) (64,4) } 67.3 | 133 ‘8.3 520 § 4.20 | 3.85
7 (2,2,3) | (4,4,8) 6.3 11 1.9 48 6.54 | 5.77

(5,3) (32,8) | 36.3 | 71.9 4.8 272 | 5.86 | 5.65
(2,1,4) (4,2,16) 6.3 11 2.7 46 3.26 | 3.24

8 | (4,9) (16,16) | 22.3 | 43.9 3.8 160 | 7.3¢ | 6.72

(3,3,1) {(8,8,2) 16.3{ 19 2.1 66 7.74 | 7.59
(3,5) (8,32) | 18.3 | 35.8 4.8 128 | 8.46 | 7.76
(3,2,2) }(8,4,4 16.3( 19 1.9 64 7.81 | 6.24 .
R (2,6) (4,64) | 22.3 | 43.¢ 8.3 169 | 7.99 | 7.58
(3,1,3) | (8,2,8) 18.3{ 19 2.1 66 3.56 | 3.56

(1,7) |(2,128)] 36.3 | 71.9 16 272 | 7.78 | 7.38
(4,2,1) |{(16,4,2) 18.31 35 2.7 120 | 6.14 | 5.98 -

4,1,2) | (16,2,4 18.3] 35 | 2,7 | 118 3.49 | 3.67
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