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RESUME SUMMARY

The sine-wave-crossing approach overcomes the prob-
lem of instability inherent in signal reconstruction from
estimated zero crossing locations. The theoretical frame-
work of Logan provides several stable reconstruction algo-
rithms for one-dimensional signals. Extending these results
to sine-wave-crossing contours, we reconstruct images by
application of an interpolation algorithm similar to the one
used in recovering a signal sampled uniformly at Nyquist
rate. A sampled version of Logan’s theorem is implemented,
investigating both theoretically and computationally the
effects of zero-location guantization on signal reconstruc-
tion. Adopting a stochastic approach, bounds on the recon-
struction error of a bandlimited and an almost bandlimited
signals are derived. The bounds indicate the effects of
number of quantization levels, of amplitude and frequency of
the added sine wave and of out-of-band energy, on the resul-
tant m.s.e.
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. Introduction

The problem of image representation by partial infor-
mation has recently been studied extensively in both the
spatial and frequency domains. In the frequency domain it
was shown that either amplitude, phase or even one bit of
phase will suffice for unigue reconstruction within some
parameter (for review see [1] ). Alternatively one can
approach the problem in the space (or time) domain
employing various sampling schemes, or more specifically
sets of points at which the signal crosses a given reference
signal. The proposition that images can be recovered from
zero crossings has attracted a great deal of interest [2]. This
became in particular attractive in view of Logan’s results
showing that under certain conditions a bandpass signal can
be uniquely represented by its zero crossings [3]. Logan
however didn't provide a reconstruction algorithm. Extend-
ing his work to Band Pass - Band Limited two-dimensional
signals, Zeevi and Rotem [4] subsequently succeeded in
reconstructing images from zero crossings. Exploiting the
duality of the Fourier-Stieltjes transform, Shitz and Zeevi [5]
based their approach on Liogan’s results and rederived most
of the theorems concerning one-dimensional signal recon-
struction from partial information in the frequency domain.
Using the properties of two-dimensional polynomials 8], or
entire functions of exponential type in two variables [7],
Curtis et al showed that indeed it is likely that a two-
dimensional signal can be uniquely represented by its zero
crossings. However in neither of these studies was a theoret-
ically stable reconstruction algorithm introduced. {Stability
is interpreted here as the sensitivity to the accuracy of
crossing locations and to frequency band constraints)

Dealing with one-dimensional signals, Bar-David [8] and
Logan [9,10] showed that by adding a sine wave satisfying
certain conditions, one can recover the original signal from
its sine wave crossings. The latter work accomplished a com-
plete theoretical framework for the sine-wave-crossing prob-
lemn, providing several stable reconstruction algorithms. In
this work we extend some results to two-dimensional signals,
reconstructing images from samples of sine-wave-crossing
contours. Considering the error introduced by finite approx-
irmation of the crossing locations, we adopt a stochastic
approach and derive an upper bound on the m.s.e. We also
consider the error resulting from an almost bandlimited sig-
nal.

1. Zeros and Sine-Wave-Crossings - One-Dimensional Signals

A sampling set for signals bandlimited to [—#,#] should
have a density of no less than 7/ #. This implies that the sig-
nal is represented by its samples taken at a rate greater
than Nyquist. In considering the representation of a
bandlimited signal by its zero or sine-wave crossings, one
should specify conditions assuring the existence of a sam-
pling set formed by crossing locations. Lowpass signals,
bandlimited to [~W,#],may have at most zero density of
n/ W, which does not satisfy (except in degenerate cases)
the above condition. One way of forming ,under these cir-
cumstances, a representation (sampling) set is by adding a
high frequency sine-wave component, resulting in a set of
crossings with density equal to that of the zero crossings of
the sine wave alone. Alternatively, one can satisfy the
required sampling rate by shifting the frequency band,
transforming the original lowpass into a bandpass signal. In
the latter case the minimum crossing rate can be specified;
it is determined by the lowest frequency in the band. With
the proper constraint of less than one octave in bandwidth,
the attainable rate can be greater than the required one.
Logan [3] proved that under certain conditions the zero
crossings form a sampling set. The conditions are as follows:
First, the bandwidth has to be less than one octave {assuring
at least a Nyquist rate). Second, only simple real zeros of the
signal are permitted to be in common with its Hilbert
transform (this eliminates, for example, the possibility of
sampling carrier zeros of amplitude modulated signals).
Logan’s theory does not provide, however, a reconstruction
scheme. Further, there seems to be an inherent problem of
stability with respect to both the bandwidth limitations and
common zerc condition. We have therefore adopted the sine
wave crossing solution in our work with images.

Bar-David [8] and Logan [9,10] independently derived
theorems concerning the problem of sine wave crossing. The
theorems state that a signal s{z) bandlimited to [—W,,W,]
(in some sense), can be recovered from the set of crossing
points §z;} of a given sine wave AcosW,x satisfying W,>W,
and |s{(z)]<AWV z (it is sufficient to require
(-D)is(in/ W,)<A V i instead of |s{z)|<A V' z ; see [9]).
This is treated as a zero crossing problem since we Inay
write

fz)=s(z)+ AcosW,z (1)

The signal f{z) has only real simple zeros, each one being
situated between two consecutive extrema of the sinusoid

F(z) = 0 ; where xieEj%_, (7-‘+1)V1/r_c} -

Since the zeros occur at Nyquist rate, they form a sampling
set for f (z) or, more precisely, for s(z).

Applying the factorization formula [4]
fl=z)= f(O)Af_I (1-—;—':) ; where f(0)#0 (3)

one obtains a mathematical algorithm for reconstructing
f(z) from its set of zeros {z;{ within a multiplicative con-
stant. The product {3) converges provided the set of zeros is
correctly ordered, i.e., |Zi+1|>|z|. This formula is however
impractical for the following reasons: First, since f (z) {and
therefore s{z) as well} should be strictly bandlimited, the
product may not converge even if {x;} are the zeros of an
almost bandlimited signal. Second, knowledge of all the
zeros and their exact locations is required.

Alternatively, a fundamental function k{z) is associated
with the zeros §z;} of f(z) [8,10]

h(z)=J(z) - W (@)

where J(z) is a count function increasing by m at each zero
of f(z). The function h(z) is bounded by m,|h(z)]<m, and
vanishes over the interval (=A,A) , where A=W, —W, is the gap
frequency. This high pass property of h{z) allows the locali-
zation of the infinite product (3), which means that an esti-
mate of f{z) can be made based on the zeros in the window
(z—Az,z+Az). This estimation process results in an error of
the order exp{—AAz). This method is stable since small per-
turbation of the zeros produce small error in the recon-
structed signal. Further it converges even if a practical sig-
nal, not strictly bandlimited, is used. The error then is pro-
portional to the signal energy outside the interval [~#,, ¥, ].

In the case where W, >3W, one has only to low-pass filter
the nonuniform samples of s{z) as if they were uniform [10].
The reconstruction formula

_ e sinW, {z ~z;)
s{z) = i=2_ ,.COSWCZ" T r— (5)
is derived in this case using the high pass property of the
derivative of the fundamental function A{z)

R{z)=m 3, 8(z—mi)=We (6)
i= —oo
In our work with images we adopt this algorithm because of
its simplicity.

1D. Image Reconstruction from Sine-Wave-Crossings

An extension of theorems concerning one-dimensional
signals to two dimensions (or multidimensions ) is not, in
general, a straightforward task. Further, any attempt to
extend results on one-dimensional zeros or sine-wave cross-
ings has to confront the basic problem that two-dimensional
signals do not have any isolated zeros, and therefore are
nonfactorable, in general. (Specificly, entire functions of
exponential type (EFET) in two complex variables are not a
ring of factorization, unlike EFET of one complex variable or
polynomials of fixed degree in one or two variables). In two
dimensions the crossings are in the form of contours con-
sisting of an infinite number of points. It is therefore likely
that in zero crossing contours there exists sufficient infor-
mation as required (and even more) for signal representa-
tion and reconstruction. Of the infinite number of crossing
points along the contours a finite number of samples will
suffice. Some recent work of Zeevi and Rotem [4] and of
Curtis et al [6,7] was devoted to this problem, resulting in
successful reconstruction of images from their zero crossing
contours.
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Considering two-dimensional signals (images), it is not
in general guaranteed that all the signals satisfy the condi-
tions required for reconstruction from level crossings
[4,8,7). Although it can be argued that the conditions are not
too restrictive. However, one can not claim that two-
dimensicnal signals, which do not satisfy the required condi-
tions, are not important (e.g. circular symmetric ete. [7]).
Therefore it seems reasonable to impose zero crossings by
(for example) adding a known signal such as sine-wave, a
technique previously applied in studies of one dimensional
signals [8-10]. This leads to the proposition that two-
dimensional. signals {especially images) may be recovered
from sine-wave crossing contours. The two-dimensional sig-
nal is treated as a parametric set of one-dimensional signals
(with the parameter representing the second independent
variable). The one-dimensional signal, obtained for each
value of the parameter, satisfys Logan's conditions.

Let s(z,y) be a real-valued function bandlimited to
E—WZ,W,] X [—W,, #,] and bounded by A;
s{z,y)|<A Vv z,y. Let {4(z,y)} be the set of contours
defined by

Flzy) =s(zy) + Acos(W X+W,, Y)=0; (7)
where Wez>We, Wey> Wy,

The extended theorem in two dimensions states that s{z,y)
can be uniquely recovered from the set {;(z,4)}. In fact, a
smaller set, formed by sampling of {§{z,y}i, is sufficient for
unique reconstruction.

The following method is used to sample and reconstruct
the images (Fig. 1). A uniformly sampled sine-wave
Acos(WzmAz) is added to a sampled image s{mAz,nly),
where Az =Ay =7/ Wer. {The median of image intensity is sub-
tracted from the signal to generate both positive and nega-
tive image values.) The sine-wave satisfys W, >3W; and
A>(—1)'s(in/ WmAy) ¥V i,n. Zero crossing locations are
estimated using the points where the resultant signal

f{(mAz nby) = s(mAT ,nAy) + Acos(W,mAz')  {8)

changes sign, with Az’ =2"Az." The required accuracy is
achieved by an interpolation {oversampling) of the order 2%.
The points (iAz',mnAy), at which the signal f(mAz.,nhy)
changes sign , are used to generate the signal Acos(WeziAx')
for each row m. The sampled sine-wave, at the points
(i0z' ;nhy), is low pass filtered (along the x axis ) according
to (5), to obtain the reconstructed image (Fig. 1).

The normalized m.s.e of the reconstructed images (Fig.
2) behaves like 27%", where 2" is the oversampling rate. The
error decreases as the "average power' increases , since
effectively there are more quantization levels.

IV. Reconstruction Error - Derivation of a Bound

Implementing a digital version requires quantization of
the spatial axis. This gives rise to a reconstruction error
due to inaccurate estimation of zeros' location. In general,
the derivation of an error formula is complicated, and only a
bound can be derived using some assumptions.

In order to derive a bound, we adopt a stochastic
approach, assuming that:

(1) The signal s(z) is a stationary lowpass process.

(28) The resultant error e{z)=5(x)-s(z) is a stationary
lowpass process (with a finite support of less than
[~W..#.] ), where s(z) denotes the signal recovered
from the set of sampling points.

(3) The position errors {s;} associated with crossing loca-
tions {z;} are distributed uniformly s.t. |&;| <2 "z
where Az=n/ W, is the Nyquist interval, and 2" is the
number of quantization levels.

(4) The position errors {¢;} are statistically independent of
s{z;). :

It can be shown [11] that under the above assumptions
the normalized mean square error Ele®(z))/ E{s¥z)] is
bounded by

—_—

Ele®(z)]

Bs%x)] ®)

I8

[
< W2E(ef) l[—_E’[séiz)] - 1] +

indicating, as expected, the effects of the number of quanti-
zation levels, and of amplitude and frequency of the added
sine wave, on the resultant error. The m.s.e behaves like
27" (where 2" is the number of spatial quantization levels).
1t is similar ,in a way, to the m.s.e resulting from amplitude
quantization assuming uniform distribution (Fig. 2). Indeed
images, as those depicted in (Fig. 1), are reminiscent of
those obtained at various numbers of amplitude quantization
levels. The above formula for the bound is valid for any
reconstruction scheme, provided that Logan's conditions
[9,10] and the above assumptions are satisfied.

Applying the algorithm to practical signals (which are in
general not strictly bandlimited) results in a reconstruction
error. An almost bandlimited signal sp(2) is a signal which
can be approximated by its bandlimited component s(z)
(with finite support over [—W,,#,] ). and which satisfys the
condition that the energy | |sp(z)~s;(z)]| |? outside the band
[—%s.W,] produces small shifts in zero (crossing) locations
of the bandlimited signal 5,(z). Hence, combining the above
with equation (9), and using a lower bound on the expected
variations of a bandlimited signal, provides a bound on the
error resulting from an almost bandlimited signal. The
bound for this type of error is [11]:

-3
E[e¥(z)] ‘ Efsi(z)] ‘W?_i

Elsi(z)]
= 10)
E[sf(z)] 2 4WE, E[sf(z)] (
E[s¥(z)] neWE
where the effective bandwidth of the signal is defined by
f WS {(w)dw
Wy = —0——
f S{w)dw

with S(w) being the power spectrum of the signal s;, and s,
the highpass component

Sp = Sp—S

Comparison of computed and predicted errors due to out-
of-band energy confirms the validity of the above formula.

Another type of reconstruction error results when a
finite (truncated) series (5) is used. This error is the same,
in principal, as the one resulting in recovery of a signal from
its uniform samples using a finite series.

V. Discussion

We have shown that two-dimensional signals {(and obvi-
ously one-dimensicnal signals) are recoverable from their
sine-wave-crossings using digital methods. The algorithm
presented is stable in the sense that a small error in zero
locations results in a relatively small error in the recovered
signal. Further, unlike other schemes, the algorithm can be
applied to an almost band-limited signal, assuring conver-
gence. The algorithm is practical because only a finite
number of zeros are required in order to get a good estima-
tion of the signal. The error, due to sampling the zeros in
finite resolution, is affected by the amplitude and frequency
of the added sine-wave relative to the amplitude and fre-
quency of the original signal. The m.s.e behaves much like
that established in the case of amplitude quantization
assuming uniform distribution. The bound derived seems to
match the experimental results (Fig. 2). This means that &
finite number of bits are needed for coding zero crossing
information thereby specifying a signal to finite precision,
which is similar to that achieved in amplitude quantization.

The representation of a signal by its zeros does not
require a wide dynamic range and it is preserved under vari-
ous sorts of memoryless nonlinear operation. However,
knowledge of the exact zero locations is required for error-
free recovery. Sampling zeros at high resolution means wide
bandwidth, while there is no need for wide dynamic range as
required by a uniform sampling scheme. Hence this method
viewed as a trade-off between the dynamic range and
bandwidth.
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We note that it is possible to use other of Logan’s recon-
struction schemes [9,10], but the easist to implement is the
one introduced in this paper, requiring only lowpass filtering
of the samples. The analytic upper bound on the recon-
struction error, due to inaccuracy in crossing-locations, is
independent of any recovery scheme under the mentioned
assumptions.

The image reconstruction algorithm presented here is
one-dimensional in nature and does not take advantage of
inherent two-dimensional properties. The issue of two-
dimensional nonuniform sampling and reconstruction is con-
sidered elsewhere [see 11].
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Fig. 1 - (a) Original image {LENA) used in processing and
reconstruction by the sine-wave-crossing technique
{256x256 pixels lowpass filtered to 42x42 ). (b), {¢) and
(d) Images reconstructed from zeros oversampled at 4, 16
and 64 times (n=2, 4 and 6) the Nyquist rate, respectively.
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Fig. 2a - Normalized m.s.e. versus oversampling rate of 2*
computed for three different reconstructed images. The
“average power" E[s¥z,y)] for each image is :
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Fig. 2b - A comparison of the theoretical upper bound {eq.
9) (—) and the normalized m.s.e. computed for the
reconstructed LENA image {----).
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