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RESUME

L'ALGORITHME IMS a filtre adaptif exige une
connaissance a priori du niveau de pouvoir d'entree
pour choisir le gain d'algorithme, parametre p ,
pour 1la stabilite” et la focalisation. Puisque le
niveau de pouvoir d'entree” est habitvellement une
des invonnves_statistiques, if est normalement
evalve” d'apres les donneds anterievros ou de'but du
processus d'adaptation. Il est ensuite suppose” que
l'evaluation est parfsite dans toute analyses ulte'
Rieure du comportement de 1' algorithme LMS.

Dans cet' article, les effets de l'estimation du
niveou de pouvoir sont incorporées dans des donndes
dependantes u qui  apparaissent explicitment dans
1'algorithme. On estime le comportement moyen et
variable de l'algorithme normalise” en prenant en
compte la dépendante statistique explicite de i sur
les donneés d'entree”.

Le comportement moyen de l'algorithme est
prouve” converger vers le poids wiener. Les effets
de fluctuvation des poids de 1'algorithme sont
egalement etudies. Une equation a_constant
coefficient matriciel est dérivee” d'apres les
fluctuations de poids du poids wiener. L'equation
est re “solve poiur une matrice de covariance_

o donneds blanches et poru 1'ALE ovec une frequence
unique dons un état stable pour u. Des expressions
pog}r l'%;reur de movais ojustement sont oussi”
presentees. I1 est prouve” que dans le cas de le
matrice de covariance o donnees blonches la mige en
moyenne d'un e chantillon d'a peu pres dux donnees
produit des dééredations négligeobles compare e

1' algorithme IMS Dons 1'application de 1'ALE, les
fluctuations de poids de l'etot—stable sont

prouveés ehe dependantes modalement etant plus
grondes o lo frequence de l'energie obsorbee”.

I. INTRODUCTION
The time domain IMS adaptive filter algorithm
[1] has found many applications where the statistics

of the input processes are unknown or changing.
These include noise cancelling [2], line enhancing
{3-7] and adaptive array processing [8,9]. The

algorithm uses a transversal filter structure driven
by a primary input. The filter weights are up-dated
iteratively based upon the differences between the
filter output and a reference input, so as to
minimize the mean square error of the difference.
In all cases, the stability, convergence time and

fluctuations of the adaptation process are governed
by the product of the feedback coefficient, u, and
the eigenvalues of the data covariance matrix RXX of

the input to the adaptive filter.

Bershad1

92717

SUMMARY

The IMS adaptive filter algorithm requires a
priori knowledge of the input power level to select
the algorithm gain parameter p for stability and
convergence. Since the input power level is usually
one of the statistical unknowns, it is normally
estimated from the data prior to beginning the
adaptation process. It 1s then assumed that the
estimate is perfect in any subsequent analysis of
the LMS algorithm behavior.

In this paper, the effects of the power level
estimate are incorporated in a data dependent u
that appears explicitly within the algorithm. The
mean and fluctuation behavior of the normalized LMS
algorithm 1is evaluated, taking into account the
explicit statistical dependence of p upon the input
data.

The mean behavior of the algorithm is shown to
The effects of

converge to the Wiener weight.
fluctuations of the algorithm weights are also
investigated. A constant coefficient matrix

difference equation 1s derived for the covariance
matrix of the weight fluctuations about the Wiener
weight. The equation is solved for a white data
covariance matrix and for the Adaptive Line Enhancer
with a single frequency input in steady-state for
small p. Expressions for the misadjustment error are
also presented. It is shown for the white data
covariance matrix case that the averaging of about
ten data samples causes negligible degradation as
compared to the LIMS algorithm. In the ALE
application, the steady-state weight fluctuations
are shown to be modal dependent, being largest at
the frequency of the input.

Since the eigenvalues of the data covariance
matrix are usually ome of the statistical unknowns
to be measured by the adaptive filter, u is usually
selected conservatively using the formula

0<u TrlR_.] < 2. Now since Tr( ] is also unknown,
it must be somehow estimated prior to adaptation.
This wusually involves estimating the input power
level. Thus, in all practical applications, there
is an implicit automatic gain control (AGC) on the
input to the adaptive filter. The AGC insures that
the y-power product is maintained within acceptable
design limits. For the properly selected u, the
algorithm convergence time, stability and mean

£ r ce depend on the ratio of
SRS SEI0T LRIV OEUNE AREndapPen SR riile fol
smaller is the ratio, t e e co gi o
and misadjustment noise properties of the algorit

[11.
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The usual approach for analyzing the behavior of
the LMS algorithm in a variety of configurations and
input signal environments is to assume that the AGC
makes a perfect estimate of the input power and
ignore any AGC effects in the subsequent analysis.
This model may be wvalid when the AGC averages a
large number of input data samples (slow acting
AGC). On the other hand, if the AGC is to respond
quickly to changes in the input statistics (fast-
acting AGC) the number of data samples may be small
enough so that the AGC no longer makes an error free
estimate of the input power. It would be quite
valuable to know how few samples are really needed
to accurately estimate the power level while not
disturbing the basic behavior of the LMS algorithm.

The purpose of the paper is to analyze the mean
and fluctuation behavior of the IMS algorithm when
the AGC operation is explicitly contained within the
LMS algorithm as a data-dependent u. The most
natural choice for the AGC algorithm is to average
the square of the data in the taps and divide the
filter input and reference by a number proportional
to this quantity, Since this estimate operates on
the same input data as the IMS algorithm, the
data-dependent estimate of p will be statistically
related to other inputs to the algorithm. This
dependence enormously complicates the analysis of
the algorithm behavior. 1In this paper, the mean and
fluctuation behavior of the weight vector 1is
analyzed and the resultant mean square error
performance 1s calculated.

II. ANALYSIS
A) The LMS Algorithm

The algorithm for changing the weights of the
LMS adaptive filter is given by [1,2].

W(n+l) = W(n) + p [d(n) - X (a)W(n)1X(n)

i}

W(n) + uld(n)X(n) - X(WX (mW(n)] (1)

where W(n)
d(n)

filter weight vector at time n,
desired scalar signal,

XT(n) = observed data vector at time n
(vector of tap values of the
transversal filter)

(x(n), x(n-1), x(n-2),.0..,x(n-N+1)),
T = transpose and N = number of filter taps.

Under the assumption that the data sequence: X(n)
is statistically independent over time [1-6], the
present weight vector and the present data vector
are statistically independent [3-7}. A difference
equation for the mean weight vector behavior can be
obtained by averaging Eq. (1) to yield

E[W(H+l)]=E[W(n)]+u[Rdx(n)‘RXX(n)E[W(n)]] (2)
where E[.] denotes statistical expectation

E[d(n)X(n)] (3

]

and Rdx(n)

Ryx (™)

For stationary input processes, when Ryx and are
not functions of time, knowledge of the eigenvalues
of enables one to determine both the transient
and steady-state mean weight behavior of the
algorithm [1,2]. Results for the covariance matrix
of the weights are also available [7,9].

E[X(n)X (n)]

B) Normalized LMS Algorithm

The algorithm to be investigated in this paper
replaces the fixed y in Eq. (1) by a data
dependent p(n) given by

N-1 Nu
b =uy v 1 xieen)Th e 0 )

1=0 X (n)x(n)

Hence the weight update equation is

T
W(n+1)=[T - Nuoxgrm__(al ] w(n)+m0d§rn)x(n) ()
X (n)X(n) xLtn)yx(n)

Eq. (4) implies a start-up time of N data samples
which shall be ignored in the subsequent analysis.

The Normalized LMS algorithm is closely related
to an algorithm presented in [10-Eq. (20)].
However, no analysis of the mean behavior of the
weights 1is presented. Furthermore, only the white
noise data case is considered.

1) Mean Behavior
Averaging both sides of Eq. (5), using the same
assumptions as following Eq. (1) yilelds

X XT
E[W(n+1) ] ={ 1-Mu o B) SAESERE [0(n) 4
X (n)X(n)

In order to perform the data dependent expecta-
tions in Eq. (6), 1t will be further assumed that
d(n) and X(n) are zero mean jointly gaussian with
correlations given by Eq. (3). To further simplify
the analysis of the mean behavior, consider
deviations1 of the mean from the Wiener weight

Wo = Byx o Raxt

Let V(n) = W(n) - Wye

Then Eq. (6) simplifies to

E[v(n+1)]=E—u0N E §E[V(n)] +

X()X " (n)
- E TN Wo (@A)
X (n)x(n)

In [11], it is shown that

T
1 F[%M - 7,0 (8)
X m)x(n) ] 1,3 3

where Fij(B) satisfies the differential equation

dr, . (8)
17 -
dB

-1 -1
= [T + 28R,,] ] . (9)
i1+ ZBRXXI1/2 [}xx XX i,j

with boundary condition Fij(w) =0 .

2) E %ﬂw] - 6,(0) (10)
X" (n)X(n) i

where Gi(S) satisfies the differential equation

- -1

= ; (D
2
T + ZBIS()J
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O

with boundary condition G,(«) = 0 . Thus, 3) Derivation of Matrix Difference Equation for the
Eq. (7) simplifies to Second Moment of the Weight Vector

The second moment behavior of the weights can be

E[V(nt])] = {I - u()N F(O)} E[V(n)] (12) evaluated about a number of possible fixed

+ u N{G(O) -~ F(O)W } . vectors, The most natural candidates are the zero

0 o vector, the mean weight vector, E[W(n)], and the

Wiener weight vector W . We chose to use W . Our

Consider the driver term in Eq. (12)

choice 1s influenced by two factors - 1) the

_ _ -1 misadjustment error 1is a simple function of the
60 F(O)wo -7 J’ 2 'I} 3[1 + 2E'RX).(] Rax second moment about Wos 2) in the real 1IMS
I B[S(X algorithm, the matrix difference equation for the

second moment about Wo is diagonalized by the matrix
~1 that diagonalizes the data covariance matrix [9].
- RXX[:["- 26IS(X] Wojdﬁ : (13) The latter factor leads to significant analytic
simplifications for solving the matrix difference
_ equation. It will be shown that this property also

But W, = Rex Rgx and holds for the Normalized LMS algorithm.
Consider the error between the weight and the

-1 -1 -1 Wiener weight V(n) = W(n) - W_ as given above
+ - - =0 . o
[T+ 28Ryl RexlT = 2BRyyd Ryy " =0 Eq. (7),
Hence, Eq. (12) simplifies to uOX(r\)XT(n) ¥
: V() = {1 - N—————} ¥(n) + N
E[V(n+])] = {1 - uONF(o)} E[V(n)] (14) X (n)X({n) X (n)x(n)
with solution [A(m(n) ~ XX ()W _]
n
E(v(m)] = [1 - HNE(O)] E[V(O)] . (15)
T
If the eigenvalues of [T - By NF(0)] are all less Let va(n) = ElV()V ()] (18)
than unity, the mean weight converges to the Wiener - : Teinlving Ta. 18 b
’ b Then, post-multiplying Eq. {18) by its transpcse and
weight since 1im E[V(n)] = 0. Thus, Eq. (5) averaging yields
n+e
converges on the average to the Wiener weight as _ ~
» v Koy (ntl) = Ky () MKy () x
does Eq. (n. Hence, using the data @
dependent u(n) as given by Eq. (4) vyields an
unbiased modification of the IMS algorithm, Bl {n)X (n)] - E[XKHEX (n) X (m)
2) Transient Mean Behavior X T(n)X(n) o % (n)X(n) w
The transient behavior of Eq. (14) is determined
by the eigenvalues of [1r - uON F(0)]. The @
eigenvalues of [I - BN F(0)], in turn, can be shown 2 9 X(n)X (n) va(n)X(n)XT(n)
- + U N“El
to depend on the eigenvalues of Ryy. Let Y(n) = Q 0 [XT(n)X(n)]z
E[V(n)] where Q 1is the orthonormal matrix that
-1
diagonalizes Rex QPXXQ‘ = Diag[)\l, XZ""’AN] a(n)X(n) — X(n)XT(n)WO .
where X, are the eigenvalues of Ryye + N Ef 1 E[v(n)]
i XX 0 XT(n)X(n)
Pre-multiplying Eq. (14) by Q and using Y(n), Eq.
(14) can be written as T T T
d(n)X"(n) - X(W)X"(n)W,
Y(a+1) = [T - u NH} ¥(n) (16) + N EfV/n]E T
X" (n)x(n)
where H is a diagonal matrix with
2
B )‘k Nzu 0 ¥

H, =~ | dB (17)
kk U, 1+ 28A
T + ZBRX |2 LI PR 0}

Eq. (16) follows from Eq. (14) because 0 also

T T T T T

dF d v X X ~X X)W vi(n)X (n

diagonalizes;s-. Hence the transient behavior of E (WX ()V" (n)X(n)X" (n)-X(n) ()o (mx"(n) }
2

the normalized 1IMS algorithm depends on the [XT(H)X(H)]
quantities 1 - uON Hkk’ k=1,¢00,N. _Hkk is evaluated )
for three cases in [11] and shown in Table I. For - N2u0 X
comparison purposes, the modal response is also
shown for the IMS algorithm with a perfect 4GC, T T _ T va XT
i.e., Tr[ is known a priori. Thus, it is seen E[d(n)X(n)V (X)X (n)-X(n)X" (n) [ (M)X(mX"(n)
that for t)i'\e equal eigenvalue case, the average [XT(n)X(n)]2

behavior of the Normalized LMS algorithm is the same
as for the LMS algorithm,
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2 2
+ N 110 X
Note that every matrix on the right hanil side of
Eq. (21) is a diagonal except QKV (n)Q

@ @ Hence, the following theorem holds for the second

2 T T T, \_ T T moments of the Normalized LMS algorithm about the
d” (X)X ()-X(WX" (MW ()X (n)=d(m)X(n)W “X()X () gro "oy oy,

+ XX (W W T X(n)XT(n) Theorem: If Q diagonalizes R then Q diagonalizes
E oo° Ky, (n) 1f it diagonalizes K o
T 2
[X (n)X(n)]

(19) This theorem is similar to an analogous theorem in
[7] for the complex LMS algorithm. The proof of the

From [11], it follows that theorem easily follows by induction,k as in [7].

@ N - F(0) However, since (0) is the dyad WOWO , the initial
% -0 conditions 1introduce off-diagonal terms. However,

from the form of Eq. (21), it can be shown that the

@ and @ thru are new expectations which diagonal and off-diagonal terms are uncoupled. This

same phenomena was observed in [9]. Thus, even though
Q does not diagonalize Ky, (0), the solution of Eq.
(21) for the diagonal entries can proceed without
knowledge of the off-diagonal terms,

The mean square error at any stage of the weight
adaptation is given by the expression

must be evaluated.
These wunknown expectations are evaluated in
{12], yielding

I<Vv(n+1)=KVV(n)—I\JuOKW(n)F(O)—Nu0 F(O)va(n) (20)

E(n) =&+ Tz ()]
+ Nzuo I/ —‘“1——1/[2 B(B) K, B(B) o Rexkvy .
IHZBRXX = Eo + Tr[A QKVV(n)Q ]

-1 )
+ TrB(BIK () IB(B)] dB a8, |, £, + ; Al Ky (mdQ 1y (23)

r RX}%[:H.ZBRXX]—I

is th ror obtained ing W . Hence,
. NZuZ0 F’O fj dB a8 g e mean square er obtained using

|1+28 l/z 2'8 =0 the diagonal entries in Eq. (21), are al? that is
h ,S(X needed to describe the mean square error behavior as a
where function of n. Let
1
F(0) = - | B(8) dB s 2n - -1
|1+2813(XF/2 IB v;(m) = [0 Ry (oo "1, (24)
and Thus, the diagonal entries of Eq. (21) can be written
-1
B(B) = Ry [1 + 28R.] (22) as
A, dB

L A ¥i(n)

Y,(n+1) =y (n)+2u N [
i i O T (1428, OM(1+28) )2
i 1 i

Diagonalization of Eq. (20)
A careful study of the various terms in Eq. (20%

suggests pre- and post-multiplication by Q, qQ 8=0
respectively.
Q K,y (nt1)o Loy Koy(mQ ! 8. dg 9y 2
2 2 1 72 i
-1 1 + Nug [f 7 5 vy(n)
[Q K,y (n)Q " IACT+281) M(1+28% )2 (1428 )
+ LION f 1) df B=0 i
T + 28 R | 2 N, A
) Ll T, @ 1+22)\
j=1 i 3 i [8=0

A(I+26A)_1(0 va(n)Q_l)

N

+ U T dp
0 /o _ A, dB
T+ 28 Ry B=0 + Nzug g, I/ 11/ - i=1,2,...,N
H(1+ZB)\i) 2(1423>\i)
+ Nzué fj ________17_ i B=0
’1+2s ’qu\ 2 ‘ (25)

-1 -1
20(T+280 ) (OKVV(n)O )A(I+ZBA) Eq. (25) is set .of N simultaneous coupled equations
in v,(n), i=1,2,...,N. Eq. (25) can be written as a
8=0 vegtor difference equation in the vector
y(n) = (y.(m), v (n),...,YN(n)) and matrices
obtained from Eq. (25). Writing Eq. (25) in vector
form is of no use in obtaining an explicit solution.

+ Te[A(Te28) 7 0 Ky (0] ACTH280) 7 JaB a8,

4
Th 1t 20 However, the vector form displays matrices whose
e resu BB = alA(I+28A)_lQ (22) elgenvalues determine the behavior of y(n) with n.
=Q The dimensionality of Eq. (25) 1s the same as the the
has been used to simplify the terms number of distinect eigenvalues of RXX’ no(t the

containing B(8). dimensionality of RXX. Hence, the easiest case to
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analyze is when = 021 . There is only one
distinet eigenvalue, Y, =0, all i. The next

simplest case 1is when~ there are two distinct
eigenvalues, say Yl = YZ = Yj = a, Yj+1 = Yj+2’
cees Yy T b, The ALE model investigated in [12]

is a special case of two distinct eigenvalues.

III. APPLICATIONS AND DISCUSSION
A) Mean Weight Behavior

For an arbitrary set of eigenvalues for , one
could, in theory, evaluate H and study the modal
responses. Fortunately, however, there are two very
interesting c¢ases that can be studied using the
results in Table I, cases (a) and (b). Case (a)
corresponds to a white data sequence input. For case
(a), it can be seen from the table that the mean modal
response is the same for the normalized LMS and for
the LMS with a perfect AGC.

Case (b) 1s also very interesting because it
corresponds to the Adaptive Line Enhancer (ALE) with a
single frequency input [4-7]. Case (b) is useful
since it corresponds to the other extreme distribution
of the eigenvalues of , the greatest ratio of the
largest to smallest eigenvalues. For,the ALE, with a
single frequency input with power 20 in an additive

s
white noise background of power L

2 2 t * T
Ryy =0, I+ (dd + d d) (26)
n s
T on(At) JZwO(At) JNwOAt
where d° = e , € esess €
At = tap spacing, wo = input sine wave frequency,
t = conjugate transpose.

The eigenvalues of Ryy are given by

A =02 4+ 8in N6, 8 = wy(AD)

2
1,2 n M Nos a — N sin6

Hence, for N large or 6 = mm, m=1,2,...

2 2
Xl = Az =0 + Nos . 27

Hence, for these parameter values, the ALE corresponds
to case (b). Furthermore, the interesting physical

2

2 2 2
problem is usually when C Z.OS but Ncs >> o,

From the third column of Table I, the noise
2
eigenvector response decay factor is 1 - U —EE and
[¢]
s
the signal eigenvalue response decay factor

. Thus for cnz = 082, it is seen that the

N2

is 1 - uo

signal modal response is much faster than the noise
modal response. This same phenomena occurs for the

LMS algorithm with a perfect AGC. Using Table I, the

2
o
modal response to the signal is 1 -y /2 N
0 2 2
[+ + 0
n s
and the modal response to the noise is
2
“n
1 -y, —>———= . Hence, the ratio of the modal
0 2 2
% + Us

decay factors 1s the same for both algorithms.

Thus, for Case (a) and (b), it is seen that the
mean behavior of the Normalized IMS and IMS with
perfect AGC are very similar. These two cases
represent the two extremes of eigenvalue selection,
Hence, it would be expected that the algorithms do not
differ significantly in mean behavior for Case (c).
One is led to the conclusion that the mathematical
model of the mean behavior of the IMS algorithm with a
perfect AGC is an accurate predictor of the behavior
of the IMS algorithm with an imperfect AGC.

B) Second Moment Behavior

When RXX = 621, Eq (25) reduces to a scalar
A

difference equation since Yi(n) = Yj(n) = a(n) all
i,j.
a(n+l) = aln) + 2u No> J d a(n)
0 N/2 + 1
(142807) -
o4 as, 8, B=0
+ @OV uge f/ SN2+ 2 o(n)
(1+2867) B=0
dg . dR
2 2 1 72
+ Nzuo g0 /I N2 ¥ 1
(1+280°)
: (28)

Carrying out the integration, subject to the boundary
conditions that the integrals disappear at B = «, and

letting B = 0, yields 5
2 Yo %o
aln+1)=(1 - ugt My Yaln) + ( 2) -~ (29)
1-= ¢
The solution to Eq. (29) is N
u2 &, 0l
a(n) = (1-2uy + M)a(0) + —2—= -0 ]
(1-F) o170 (39
2,73
(1—2110 + Nuo)
In steady-state,
Yoo 1 %0
2 ) =
1 —‘E o
lim a(n) = E — 31
e L3

The comparable equations for the IMS algorithm can be
obtained from [9]. For the white noise case, the
second moment about the Wiener weight satisfies the
difference equation

B(at1) = [1-2u0” + v e (D)8 + %%, (32)
Eq. (32) has steady-state solution

Le
lim 8(n) = 2 "0 (33)

>

o}
1—”T(N+z)
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The two algorithms can be compared by constraining
the transient behavior to be the same and comparing

steady-state mean square errors.

Thus

2

1= aue” 4+ ate W) = 1 - 2k Ml (36)

Solving for the smaller root,

2 2.2 Nt+2 2 2
M= MO -(uo) Gj;ﬂ no” for ucz(ﬁgfﬁ << 1 (35)
Thus, on comparing Eqs. (31) and (33), it is

seen that the increase in the misadjustment error

(second term of Eq.
2.-1

(1~ ﬁ) .

misadjustment error increases only by 25%.

from Eq.

(23)) for the Normalized LMS is
10, the

Also,

Hence, for N as small as

(31), N > 2 for the misadjustment error to

be bounded.

This analysis has been extended to the ALE in

[12].
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Table I Comparison of NLMS with LMS with Perfect AGC



