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RESUME

Avec cet article nous analyzerons 1'intégration
de la modulation et de la codage de canal.

La codage de canal sert a augmenter la distance
Euclidienne entre les signaux modulés. On monstrera
que la distance minimale Euclidienne est significative
ment augmenteé avec 1l'introduction de la codage de ca-
nal.

Nous déterminerons la configuration de la matrice de
contrdle de parité avec différents codes linéaires
binaires, pour obtenir le valeur maximal de la distan-
ce minimale Euclidienne.

Ensuite on déterminera la probabilité d'erreur
d'un systéme de communication, qui integre les opera-
tions de modulation et de codage de canal.

SUMMARY

In this paper the integration of channel coding
and modulation is analyzed. Channel coding is used to
increase the Euclidean distance between modulated si-
gnals. It is shown that the minimum Euclidean distan—
ce is significantly increased by the channel coding.

Many different block codes are considered and the
optimum configurations of the parity-check matrix of
each code, which permits to achieve the higher mini-
mum Euclidean distance, are determined.

The error probability of communication systems
using integrated modulation and channel coding is
determined.
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1. INTRODUCTION

An increasing attenction has been devoted in the
recent years, to the design of efficient modulation
schemes for data transmission. The principal two para
meters used to characterize ‘the efficiency of a mo-
dulation scheme are the bandwidth occupance and the
bit error probability.

Continuous-Phase~Frequency-Shift-Keying (CPFSK)
modulation is one of the more attractive schemes for
its good spectral properties. The error probability
of a CPFSK scheme is minimized by using a Maximum-
Likelihood demodulator, which chooses as the trans-—
mitted sequence that having the lower Euclidean distan
ce from the received sequence. In this way, the bit
error probability is determined by the Euclidean
distance between the modulated signals. It is also
well-known from the literature that, for high signal-
to-noise ratio, the error probability is essentially
determined by the minimum Euclidean distance.

When the desidered error probability cannot be
achieved with the modulation scheme, a channel coding
operation must be introduced. Channel coding creates
a Hamming distance between codewords through the re-
dundancy symbols.

The Euclidean and Hamming distances are different
and they are used by the receiver in two distinct
ways: the first infact, is used during the demodula-
tion and the second during the decoding. For this
reason, these two operations are always distinct and
are optimized independently from each other.

Some examples can be found in the literature,in
which the demodulation operation is employed in order
to improve the channel decoding efficiency, through
the reliability estimate of each received symbol
r; o [21, [2]', [3] , [4] . The utilization of the
reliability estimate improves the performance of the
channel decoder.

Recently, Ungerboeck has described a method for
the integration of modulation and channel coding [5]

In particular, Ungerboeck utilizes a channel co-
ding scheme with expandéd sets of multilevel phase
signals in order to increase the Euclidean distance’
in the signal space. By using this type of channel
encoding, a net improvement in the error probability
can be obtained. In a similar way, Aulin and Sundberg
have shown that convolutional codes can be used in
order to improve the Euclidean distance of a modula-
ted signal [6] .

In this paper the integration of channel coding
and modulation in a communication system, in order to
increase the Euclidean distance between modulated si-—
gnals, is analyzed. In this way, a net improvement can
be obtained in many cases with respect to the classi-
cal situation, in which modulation and channel coding
are separate and indipendent. CPFSK modulation and
block codes are considered. It is shown that the Eucli
dean distance of the integrated communication system
depends from the configuration of the parity-check
matrix H of the code. For a given code and a fixed
value of the modulation index, some configurations of
H are optimum, because the minimum Euclidean distan—
ce between the modulated signals assumes the maximum
value. These configurations of H permit: to achieve
the minimum error probability.

Many different block codes, as Hamming codes,short-
ened Hamming:codes and BCH codes are analyzed. For all
these codes, the optimum configurations of the parity-
check matrix have been determined as a function of the
modulation index and of observation interval length.

By using these results on the Euclidean distance,
the block error probability of communication systeﬁs
using modulation and channel coding in an integrated
way; is derived and compared with that obtained by a
classical system. It is shown that in many cases, the
block error probability Pb is lower than in the clas-
sical systems, also when the parity-check matrix con-
figuration is not optimized. When H is optimum, a net
reduction in P, is obtained for all the signal-to-
noise ratios.

2. INTEGRATION OF MODULATION AND CHANNEL CODING

If E denotes the energy of the signal and T the
signaling time, a CPFSK modulated signal can be re-
presented in the form [7] :

2E
(1) sk(t) = -3~ cos [cgét + dk =5+ xk]

. for KT < t < (K+1)T
being fo = (DO/ZJE the carrier frequency, d the

k-th informative symbol (d = +1 or -1), h the
modulation index and xk a phase term given by

2 = d -d hk d 27

(@) x [xk_1 + (g, k) /1 ] mo

being x = 0 . The term X has been introduced in order
to maintain the phase continuity at the end of the si-
gnaling intervals. For h = 0.5 the MSK modulation is

obtained.

If S5 is a codeword of a code having length equal
to n , then it can be associated with a vector in the
signal space s;(t) given by

3 s (t) = t t R t
3 s (0 [Si,l( bosy HlE), sy )]

where s; .(t) denotes the waveform used for the trans-
1 .
mission of the j~th symbol of e -
The Euclidean distance between the two signal se-

quences s;(t) and s.(t) associated with the two code-

words ¢, and ¢, is [7]
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the normalized minimum
min ° in the case of the CPFSK
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The parameter d

in characterizes the error proba-
bility of a communication system [7] and therefore
is a quite important parameter. The Euclidean distan-
ce between two signal sequences depends on the modula-—
tion index h and the number of signaling intervals in
which the two sequences differ.

The block-diagram of the communication system
with Integrated Modulation and block Channel Coding
(IMCC) is shown in Fig.l .

At the transmitter side, an IMCC system has the
same structure of a classical communication system.

At the receiver side the demodulation is perfor—
med every n time signaling intervals.

then the two codes have the same error correction capabi
lity and characteristics; such codes are called equiva-
lent [8] . In particular, every code is equivalent

to a code in a systematic form having a parity-check ma-
trix of the form:

(6) H = [P , In_k]

being P a matrix (n-k) x k and I, the (n-k) x (n-k)
identity matrixs .

On the contrary, in the IMCC systems the Euclidean
distance depends on the configuration of H : by permu-
ting rows or columns of H, the minimum Euclidean distan-
ce varies and therefore changes the performance of the
system.

4 €i Iy £
— CHANNEL RN COMMUNICATION
MODULAT
ENCODER LATOR CHANNEL DEMODULATOR s

Fig. 1 General block-diagram of a communication system with integrated modulation and channel coding.

The signal rj(t) received at the j-th time si-
gnaling interval ( 1g jg n ) is stored to constitu-
te the received signal sequence r(t). The demodulator
compares g(t) with all the possible codewords ¢;
for 1€ i< 2 and chooses that codewords Cis which
corresponds to the signal sequence §i(t) having the
minimum Euclidean distance from the received vector
r(t). No channel decoding operation is performed in
this way at the receiver side. The Hamming distance,
introduced by the channel coding operation, is utili-
zed in an IMCC system only to increase the Euclidean
distance between the transmitted signal sequences.

If a code has a minimum Hamming distance equal
to dH , then two codewords ¢; and c¢. differ at least
in dH positions. As a consequence, s.(t) and Ei(t)
differ, at least, in dH time signaling intervals and
therefore, the Euclidean distance is increased with
respect to the case in which no channel coding opera-
tion is present. A net improvement is also achieved
with respect to a classical communication system

using channel decoding.
These advantages are obtained at the expense of the

demodulation complexity. In a classical communication

" system the demodulation is performed symbol by symbol;
in an IMCC system the demodulation is performed by
comparing the received vector r(t) with all the 2K
possible signal sequences and for mean ‘or high k the
complexity can be very high.

Now we consider a block code (n,k), which is de-
fined through a parity-check matrix H having dimen-
(n-k) .n. )

If the parity-check matrices of two codes differ
only for row or column permutations and combinations

sions

The choice of the configuration of the parity -

‘check matrix H is, therefore, quite important in order

to optimize the performance of an IMCC system.
Unfortunately no theoretical approach was found

by the authors and therefore the computation of the

optimum H must be carried out by computer research.

3. RESULTS

In this section, the results concerning the Eucli-
dean distance of IMCC systems for some block codes,are
given. The codes considered herein are always in the
systematic form. The Euclidean distance of an IMCC
system depends on the configuration of the parity-check
matrix H of the code. For all the codes considered in
this paper a complete and exhaustive computer research
was performed in order to determine the worst and the
best configurations of H .

First, the Hamming codes (7,4) and (8,4) having
a Hamming distance of 3 and 4, respectively are analy-
zed. The parity-check matrix, if considered in a syste-
matic form, can assume for the two codes N_ = 4! dif-
ferent configurations. In fact, matrix P in (6) can
vary, while In—k is fixed once the code is assumed as
systematic.

By considering all the possible configurations
N, of the matrix P the best and the worst matrix have
been derived. These matrices depends on the modulation
index h: a matrix which results optimum for a given
h value can be non - optimum for other h values.

The best and the worst configuration of H for the
analyzed codes are reported in Table 1 .
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In this Table each column h; of H is represen-
ted by a decimal number between 1 and 2n"k—l, whose
binary representation is equal to Ei . For semplici-
ty, when two or more matrices give the higher or the
lower dﬁin y only a matrix, randomly chosen, is repor
ted in Table 1.

In Fig.5 the Euclidean distance for the BCH code
(15,7) is represented. The configuration of the parity-
check matrix considered,is shown in the same Fig.5 .

For such code, which has a Hamming distance equal
to 5, the Euclidean distance is greatly increased with
respect to Hamming codes.

., [SIR REE I} . . ' WORST
copg | HODULAZION MATIIR copy | HODULATION HATRTX
INDEX h IHDEX
0.1 + 0,6 (6,9,7:5.:4,2,1) 0.1 + 0.% (5,3,7,9,4,2,1)
{7,4) 0.7 + 0.9 (6,3,7,5,4,2,1) (7,4) 0.6 (6,3,7,%,4,2,1)
0.7 + 0.9 (5,3,7,6,4,2,1)
0.1 + 0.5 all matrices 0.1+ 0.% all matrices
0.6 (11,13,15,7,9,%,3,1) 0.6 + 0.8 ((7,15,11,13,9,5,3,1
GO o @, a,0.s,,0 |80 0.9 [(13,12,15,7,9,5,3,1
0.8 + 0.9 [(11,15.,7,13,9,5,3,1)
0.1 + 0.6 (5,7,8,4,2,1) (6,3)| 0.1 +1.0 (5,7,6,4,2,1)
(6,3)] 0.7 + 0.8 (3,5,0,4,7,1)
0.9 (5,4,7,4,2,1)
0.1+ 0.3 (3,7,4,¢,1) 0.1+ 0.5 (6,5,4,2,1)
0.4 + 0.5 (By3,4,2,1) 0.6 (3,5,4,2,1)
5.2) Codih?y 5,2) ' 154452,
0.6 (7, 3,0442,1) 0.7 (3,6,4,2,1)
0.7 + 0.9 (3,5,4,2,1) v+ 0.9 (6,5,4,2,1)
Table 1. Optimum and worst configurations of the parity-check

matrix for some

As example, matrix (7) of the Hamming code (7,4)
for h=0.5, gives d%in =3 and is one of the worst con-
figurations,while matrix (8) gives d%in =4 and is one
of the best configurations.

1011100
(7) H = 1110010
0111001
1011100
(8) H = 1101010
1110001

and the lower}dr%in obtained
are reported for the code

in the following ones, curves

In Fig. 2 the higher
for different values of h
(7,4). In this figure and
b and a represents respectively the higher and the
lower dﬁin , while curve ¢ represents d for the un-
coded CPFSK. The matrix
in Table 1.

In Fig.3 the Euclidean distance for a system

min
configurations are reported

using a Hamming code (8,4) is reported.

Some shortened Hamming codes are also considered.

Shortened codes can be obtained by erasing some
information symbols: the Hamming distance is not redu-
ced by this operation [8] . In particular, codes
(5,2) and (6,3) obtained from the Hamming code (7,4)
have been analyzed. The minimum Euclidean distance is
shown in Fig.4 for the code (5,2).

Hamming codes.

The evaluation of the optimum parity-check matrix
for the code (15,7) requires a very high time computa-
tion. For this reason, the optimum H has been determi-
ned only for two modulation index values: h = 0.5 and
h = 0.1 . The optimum and the worst matrix configura-
tions are reported in Table 2 .

The error probability of a communication system
using integrated modulation and channel coding is quite
difficult to determine theoretically. Infact, the com-
putation of the error probability requires the know-
ledge of the Euclidean distance between all the se-
quences. Moreover, a good approximation to the error
probability for mean and high signal-to-noise ratios
can be obtained by using the union bound [8]

]/2
P, < QU dnin B/ )

where N, is the noise spectral density.
In order to illustrate the gain obtained by using
the integration of the modulation and channel coding

(9)

operations, we presént the results for a system using
the Hamming code (7,4).

Fig.6 shows the error probability Py of an IMCC
system using a Hamming code (7,4) for the two configura
tions (7),(8). Curve a represents the error probability
of a classical communication system using separate
demodulation and decoding operations,curves ¢ and b
represent the upper bound on Pb,(g), for the parity-
check matrix configurations (7) and (8) respectively.
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All these curves are obtained for a modulation
index h = 0.5 .

As it can be seen from these results, an IMCC
system offers a net improvement with respect to a clas
sical communication system,in terms of P, . The upper
bound for the worst configuration of H is often lower
than the error probability achievable with a classical
communication system. Therefore, also in the worst
case, a considerable gain is obtained by using an
IMCC system. Moreover, the optimization of the matrix
H is quite important, because it gives a further
important improvement.

4. CONCLUSIONS

In this paper, the integration of channel coding
and modulation operations in a communication system
'is described. Channel coding is used in order to incre
ase the Euclidean distance in the signal space. It can
be shown that the improvement in the Euclidean distan-
ce permits to achieve a reduction in the error proba-
bility, with respect to the case in which the two ope-
rations are performed in an independent and separate
way.

REFERENCES

[1] D.Chase, "A Class of Algorithms for Decoding
Block Codes with Channel Measurement Information"
IEEE Trans.Inform.Theory,vol.It-18,n0.1, pp.179-
182, Jan. 1972.

[2] T.Aulin,C.E.Sundberg,"On the Minimum Euclidean
Distance for a Class of Signal Space Codes",
.IEEE Trans.Inform.Theory, vol.It-28, no.1,
pp.43-55,Jan.1982.

[3] K.R.Matis,J.W.Modestino, "Reduced-Search Soft -
Decision Trellis Decoding of Linear Block Codes"
IEEE Trans.Inform.Theory, vol.It-28,no.2, pp.349-
355, Mar.1982.

[4] H.Tanaka,K.Kakigahara,"Simplified Correlation
Decoding by Selecting Possible Codewords Using
Erasure Information", IEEE Trans.Inform.Theory,
vol.It-29, no.5,pp743-748,Sept.1983.

[5] G.Ungerboeck, "Channel Coding with multilevel/
Phase Signals", IEEE Trans.Inform.Theory, vol.IT-
25, no.l, pp.55-67, Jan.1982.

[6] 6.Lindell,C.E.Sundberg,T.Aulin,"Minimum Euclidean
Distance for Combinations of Short Rate 1/2 Con-
volutionalCodes and CPFSK Modulation', IEEE Trans
Inform.Theory, vol.It-30, no.3, pp.80%-519 ,
May.1984.

[7] T.Aulin,C.E.Sundberg,'"Continuous Phase Modulation
-Part I: Full Response Signaling", IEEE Trans,
on Commun.,vol. Com-29, no.3, March 1981,

[8] J.M.Wozencraft, I.M.Jacobs,"Principles of Com-—
munication Engineering', New York, Wiley, 1965.

Fig.2 Minimum Euclidean distance for the Hamming
codes (7,4) as function of h for best and
the worst configuration of H.Binary CPFSK
modulation is used.

Fig.3 Minimum Euclidean distance for the Hamming
code (8,4) as function of H,when binary
CPFSK modulation is used.
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Fig.5 Minimum Euclidean distance for the BCH code
(15,7) as function of h. Binary CPFSK modula-
tion is used.

MODULATION .
. OPTIMUM MATRIX WORST MATRIX
0.5 (232,177,116,230,29,115,58,128, 64,32, 16,8,4,2,1) (232,118,58,230,115,209, 29,128, 64,32, 16,8,4,2,1)
0.1 (116,230,209,29,232,58,115,128.64,32,15,8,4,2,1) (232,%8,29,230,209,116,115, 128,64, 32, 16,8,4,2,1}
i

Table 2. Optimum and worst configuration of the parity-check/matrix for the BCH code (15,7).




