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RESUME

Les boucles numériques d'asservissement
trouvent maintenant leurs applications dans des
domaines variés surtout en communications numériques
ol elles sont utilisées pour l'asservissement des
rythmes des symboles et de la fréquence et de la
phase de la porteuse. Dans une telle application, les
variations sur un grand intervalle des niveaux du
signal et du bruit rendent difficile le choix des
param@tres de la boucle. Dans la premidre partie de
l'article, nous présentons 2 partir d'une simple
construction graphique une méthode rapide pour déter-
nminer la dynamique de la boucle. Dans la deuxiéme
partie, nous analysons une méthode comme permettant
d'élargir la dynamique de la boucle avec quelque
perte en rapport signal & bruit. Le signal d'erreur
est quantifié 3 deux niveaux. Nous présentons en
particulier une analyse exacte du comportement des
boucles de premier ordre & l'aide de la cha%ne de
Markov.

SUMMARY

Digital control loops have become very
popular in a wide variety of applications. In parti-
cular they are often used as time, frequency or angle
trackers in digital communication receivers. In such
applications the signal and/or noise levels often
vary over wide ranges. This leads to complications in
choosing loop parameters which will yield acceptable
performance (and of course stability) under these
varying conditions.

The first part of this paper will present
a technique for rapidly determing the useful dynamic
range of digital control loeps based on a simple
graphical construction. The useful range is defined by
the criterion of maintaining the r. m. s. error below
a design value. It will be shown how such curves can
be used as a design aid for setting loop parameters
and for determining the efficacy of such techniques
as automatic gain control (AGC) preceding the loop.

The second part will present an analysis
of a known technique for dynamic range extension
(at the expense of some sensitivity), namely, hard-
limiting for error signal. In particular, an exact
analysis of the behavior of first-order loops based on
a Markov chain model, will be given. The results,
which are very general, will be compared to lineari-
zing approximations which are often made. In particular
the range of validity of the well known 2 db (2/m)
loss for the case of Gaussian noise will be given.
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INTRODUCTION

In digital communication receivers and
numerons other applications it is necessary to track,
i.e., continuously estimate, the value of parameters
such as : time, frequency, phase, antenna pointing
angle, signal strength, noise background, etc. It is
natural to obtain periodic digital (sampled) measu-
rements relating to the tracking errors and then
process them in a digital filter to compute updated
parameter estimates. In addition to being a natural
approach, sampled tracking loops can have performance
superior to analog loops. This occurs because only
sufficient statistics are used, thus reducing degra~
dations due to non-linearities. This paper concentra-
tes on the dynamic range performance of such digital
control loops when the input signal and/or noise
levels are allowed ito vary. Both linear loops and
non-linear loops with hard-limited error signals are
considered.

I. LINEAR MODELS
A. General Relationships.

Figure 1 shows a model of the linear
system to be investigated first. The parameter to be
tracked is x, with k being the index of discrete
time. The tracking system produces % , the estimate
of x, . The only observable available is an error
signal e, which depends on the actual error, x,_ - ﬁk’
and it is corrupted by additive noise. The error
signal e, is the input to the linear trackiTg filter
which has a transfer function given by F(z 7).

It is assumed that the measured error signal can be
written as

1)

e =G(x, -%) +

T 00 TR F g
That is, e, is the sum of a term proportional to the
actual error glus an independent zero-mean noise term

of variance o - The actual error is denoted as vk :
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Fig. 1. Linear System Model

The loop's input-output transfer function is given by :
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with a corresponding unit sample response of h, .
The transfer function relating the error to theé noise
is given by :

-1
%.(z‘l) _ F(z ]_1
1 + GF(z 7)
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= H(zT)/6 )

From this it follows that if the noise samples are

assumed independent, the resulting variance of the
error (due only to noise) will be :

cé =0121 z(hk/c;)2 (5)

This relationship leads to the definition, of avera-
ging time Navg (in sample periods) :

N A
avg=—12— (6)
th
so that
2 .1 2
0p =¥ (on/G) (€D)

avg

The quantity (o¢_/G)? can be considered the reciprocal
of the signal-to-noise ratio (SNR) per input signal
and is equal to the variance of the estimation error
if only one input sample were used instead of an
averaging loop.

Normally there could be a maximum
allowed value for 02, o2 that would be deter-
mined by external system constraints, e.g., allowed
phase jitter . At some design-point values for o_ and
G, denoted as o and G , the loop averaging time
would be chosen”to satigfy by setting N 0
(o_ /6 )2/62 . This in turn could detefMine the

no’ o do
filter coefficients. However, an important point to see
is that the actual value of N depends on the
actual value of G, which is dirBctly related to the
strength of the error signal. Generally, if G increases
the averaging time will decrease. However if G increa-
ses beyond a certain critical value the loop can
become unstable and hence useless as a tracking
system. This dynamic range problem is the concern of
the remainder of the paper.

B. Determining the Dynamic Range.

As long as o2 = (o_/G)2/Navg remains
below its design value the loop will be considered to
operate effectively. The issue is whether 02 remains
less than its design value, 02 , as o¢% and”c vary
from their design-points. A séﬁple graghical technique
is suggested for determining this

N 2
Plot (ﬁé!ﬁ_.) and (on /G)”_Y

avg,o (Un,o/Go)
on the same set of axes versus G/G_. Use logarithmic
scaling on both axes to force both curves to go
through the origin which corresponds to the design
point. Wherever the Navg curve is above.the (Un/G)
curve the design criterion is met. This will be
illustrated below for first and second order loops.
(Note that if only o is varying the problem is
trivially solved. It is the variation in G that
introduces the complication of the variation of loop
aneragins time).

C. Firstand Second Order loops

{ First order loops.
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For the first order loop Xk is updated simply as :

R R the

Without going into detail, the closed loop response
will be :

C)

h, - be (1-b6) ¥t K >l 9)
and the resulting averaging time will be :
2-bG
= =72= 0
Navg bG (10)

Figure 2 shows the curves of (Na c,/ 0) for
several values of Nav . It is Xﬁsyagg’show that this
stays stableé gﬁiy if

G
G0 < Navg,o +1 an

the same. It the signal level were to increase,
say, 6db then the noise could increase 5 db and
acceptable performance would still result.

It automatic gain control (AGC) were used
before the loop the dynamic rqnge could be extended
considerably. For example, if the AGC held o2 + c2
constant then it is not hard to show that :

02
o

GZ

L+ (g /6, )° -1
(/e )2

(125

For any design-value of SNR, (G /o_ )2, this AGC can
also be plotted. This was done for™ design SNR of

- 3 db and is also shown on Fig. 2 labeled "AGC". The
addition of AGC renders the loop stable for all values
of input signal strength and will give performance
within the o2 constraint as long as G>G . which cor-
responds to éeeping the input SNR abon@ the design

which corresponds to the rapid fall-off of each curve value.
in Figure 2. .
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Fig. 2. Variation of Averaging Time with Gain -
First Order Loop.

Alsc shown in Figure 2 is the curve (o_/G)2/(s_ /G )2
corresponding to holding o2 = ¢2 andnlettingnégly0

G vary. At any value of ey ana®n , the vertical
distance between the curves 1ndicatfsg’gy what factor
02 may be increased while the design constraint is
still being met. For example, if N = 15 then the
loopcan withstand an increase in sigﬁéf level of nearly
4 (12 db) beyond its design-point as long as ci Y ema ins

2. Second order loops.

The second order loop forms its
correction to the tracking estimate using two prior
values of the error signal and estimated output

bd aa
12 + b, e

k-1 T 8% TPy T by, (13)

Second order loops can provide better transient
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tracking behavior than the simple first order loops.
In particular, if one sets a, = 2 and a, = -1 then

it will be able to track all input steps and ramps
with no steady state error in the absence of noise.
The first order loop only achieves this for step
inputs. Using E (3) to find the closed loop transfer
function the unit sample response can be (and was)
found exactly. An expression for N can be (and was)
also derived. To save space just a f8w key results
will be given. The unit sample response will be of the
form h, . rK cos (kb) assuming the poles of H(z-1)

are complex, where r2 = Gb,+ Jand 2r cos b = 2 = Gb,.
For the commonly selected value of damping factor
equal to 1/ (rate of decay equal to the frequency
of oscillatjon) r should be set equal to e P, Then hk
can be approximated for small b as

_— k<0
- - ) 4
ko obe™®iosib) k> 1 a9
(for b <<1)
and a good approximation for design purposes is
b= — 2 13

3(Navg+ 0.44)

which is very accurate for any N greater than 1.

Knowing b and GO the values of b? &nd b2 are found
from- : b
b, = 2(1-e cos b)/C
1 o
-2b (16
b2 = (e —1)/Go

Figure 3 shows the curves for the second order loop
that correspond to Figure 2 for the first order. The
curves are similar, however second order loops offer
a somenhat increased dynamic range.
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Fig. 3 Variation of Averaging Time with Gain -
Second Order Loop.

IT. HARD LIMITED ERROR SIGNALS

Another way to deal with the problem
of dynamic ronge is to hard limit the error signal as
modeled in Figure 4 for the case of additive noise.
Only the sign of the error signal is used as the
input to the loep filter.

Fig. 4. Loop with Hard Limited Error Signal
(Additive Noise).

A. Linearized Analysis.
(Additive Noise).’

To analyse such a system the mean
and variance of the hard limited error signal ¥y are
often approximated as -

Y ~ 26 p (0 8, (17)

02 =1

y
when the tracking error is small, when the input SNR
also is small, and when the probability density
function of the noise, P _(x), is well hehaved: at the
origin. (The latter assumption must be verified in
each case. For example, pulsed noise would not neces-
sarily justify the approximation). The results of the
previous section on linear loops can vow be applied
with the following effective values for gain and noise
variance :

_ 2
Geff ZGpn(O) Gn,eff

1 (18)

These loops generally remain stable with
respect to changes in input signal and noise variations
although at a sacrifice in sensitivity. Specifically the
mean square tracking error will now be

2 - 1 1

(19
%
4G2pr21(0) N

avg

In the special case of Gaussian noise pn(O) = 1/1 2noi
50
2

“n 1

G2 N
avg

which shows a degradation of (7/2) or 2db in effective

SNR.

o=

o2 20

B. Exact Analysis : First Order loop
The first order loop defined by

2 A
k= ® g Py
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can be analysed exactly and readily using Markov
process concepts. (To simplify matters it will be
assumed that the input x, = O so that the effects of
transients will be put aside.

It is important to note that in the analysis
to follow the assumption of additive noise is not
needed. Indeed in many practical cases, e.g, tracking
signal timing, the model here will apply althouzh the
noise is not additive. Holmes (1) presents a similar

enalysis for a specific application in a more complete
form. The emphasis here is on the general problem of
dynamic range.

The output of the loop % 1s seen to descri-
be a random walk with amplitude inCrements of + b. The
output value itself can be used as the definition of
the state of a discrete time, discrete amplitude
Markov process. As a matter of fact, it is a discrete
time birth-death process since only transitions to
adjacent states are allowed. This is indicated in
Fig. 5 where each box represents a possible output
value, i.e., state of process, and each arrow is
labled with the conditional probability in making the
indicated trasitions. State j corresponds to a
tracking error of bj, j : 0, + 1, + 2... . The A.'s
are the probabilities of moving in a direction of
increasing absolute error (increasing |% |) from
state j ; the u 's are the probabilities of moving in
a direction of decreasing absolute error ;

M, =1 - A,
] J

Ao A
A 5=0 1 : .
AL

L

Fig. 5. Markov Process Model of First Order Loop.

If P, is defined as the probability of being
in state j, i.®., error bj, then it is well known
(2) that :

Ai sensh
p,=p, = 3L 0o P
uj ...ul
where symmetry has been assumed. P_ is found from the
normalizing constraint that IP, = . The mean square
tracking error will be : J

(22)

(=]
02 =b2 1 32p, (23)
é io® ]
j=-
Gaussian Noise Example
In the special case when the noise is
additive and Gaussian :
2
A, = e X 24y (24)
J ™
Gb
5

n

Figure 6 shows the results of numerically
finding 62 from Eqs, (23) and (24) after evaluating
a sufficient number of P,'s to get accurate results.
Also shown on the figure are the results obtained from
the linearized model. Several points are worth noting :
(1) The linear model agrees very well with the exact
results as long as b(G/0_) ¥ .5 which can be used to
define the "small error""regime. (2) The linear model
predicts instability for |2;" (bG/o_)” 2 whereas the
exact solution shows behavior that is always stable.
(3) The variance cannot be decreased belox b2/2 even for
very large (G/o_) since the loop is always kicked off
of exact zero error to t+ b (but returns immediately).
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Fig. 6. Gaussian noise, exact and linearised Model.

The transient behavior can be analysed
using basic results from markov process, random walk
theory.

CONCLUSIONS

Techniques for finding the acceptable
dynamic range of digital tracking loops were presented.
On the case of linear first and second order loops a
graphical construction was give,. For the case of hard-
limited error signals, a linearized model was reviewed.
For the first order loop with hard limited error si-
gnals an exact analysis was show,. To the knowledge of
this author the exact solution of the second order loop
with hard-limited error signals remains a challenge.
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